全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Identifying Temporal Codes in Spontaneously Active Sensory Neurons

DOI: 10.1371/journal.pone.0027380

Full-Text   Cite this paper   Add to My Lib

Abstract:

The manner in which information is encoded in neural signals is a major issue in Neuroscience. A common distinction is between rate codes, where information in neural responses is encoded as the number of spikes within a specified time frame (encoding window), and temporal codes, where the position of spikes within the encoding window carries some or all of the information about the stimulus. One test for the existence of a temporal code in neural responses is to add artificial time jitter to each spike in the response, and then assess whether or not information in the response has been degraded. If so, temporal encoding might be inferred, on the assumption that the jitter is small enough to alter the position, but not the number, of spikes within the encoding window. Here, the effects of artificial jitter on various spike train and information metrics were derived analytically, and this theory was validated using data from afferent neurons of the turtle vestibular and paddlefish electrosensory systems, and from model neurons. We demonstrate that the jitter procedure will degrade information content even when coding is known to be entirely by rate. For this and additional reasons, we conclude that the jitter procedure by itself is not sufficient to establish the presence of a temporal code.

References

[1]  Theunissen F, Miller JP (1995) Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci 2: 149–162.
[2]  Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, Mass: Massachusetts Institute of Technology Press.
[3]  Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ. J Physiol 61: 151–171.
[4]  Rieke F, Warland DK, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. Cambridge, Mass: MIT Press.
[5]  Montemurro MA, Panzeri S, Maravall M, Alenda A, Bale MR, et al. (2007) Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. J Neurophysiol 98: 1871–1882.
[6]  Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AV, et al. (2006) Spike-timing precision underlies the coding efficiency of auditory receptor neurons. J Neurophysiol 95: 2541–2552.
[7]  Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2008) Neural coding of natural stimuli: information at sub-millisecond resolution. PLoS Comput Biol 4: e1000025.
[8]  Foffani G, Morales-Botello ML, Aguilar J (2009) Spike timing, spike count, and temporal information for the discrimination of tactile stimuli in the rat ventrobasal complex. J Neurosci 29: 5964–5973.
[9]  Aldworth ZN, Miller JP, Gedeon T, Cummins GI, Dimitrov AG (2005) Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spike-timing precision of sensory interneurons. J Neurosci 25: 5323–5332.
[10]  Aldworth ZN, Dimitrov AG, Cummins GI, Gedeon T, Miller JP (2011) Temporal encoding in a nervous system. PLoS Comput Biol 7: e1002041.
[11]  Butts DA, Weng C, Jin J, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. J Neurosci 31: 11313–11327.
[12]  de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275: 1805–1808.
[13]  Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. Science 319: 1108–1111.
[14]  Huetz C, Philibert B, Edeline JM (2009) A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. J Neurosci 29: 334–350.
[15]  Koppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17: 3312–3321.
[16]  Rathbun DL, Warland DK, Usrey WM (2010) Spike timing and information transmission at retinogeniculate synapses. J Neurosci 30: 13558–13566.
[17]  Rieke F, Bodnar DA, Bialek W (1995) Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc Biol Sci 262: 259–265.
[18]  Goldberg JM (1991) The vestibular end organs: morphological and physiological diversity of afferents. Curr Opin Neurobiol 1: 229–235.
[19]  Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130: 277–297.
[20]  Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G (2010) Coding of stimuli by ampullary afferents in Gnathonemus petersii. J Neurophysiol 104: 1955–1968.
[21]  Neiman AB, Russell DF (2004) Two distinct types of noisy oscillators in electroreceptors of paddlefish. J Neurophysiol 92: 492–509.
[22]  Tricas TC, New JG (1998) Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields. J Comp Physiol A 182: 89–101.
[23]  Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2: 947–957.
[24]  Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE (2007) Neural variability, detection thresholds, and information transmission in the vestibular system. J Neurosci 27: 771–781.
[25]  Jones LM, Depireux DA, Simons DJ, Keller A (2004) Robust temporal coding in the trigeminal system. Science 304: 1986–1989.
[26]  Massot C, Chacron MJ, Cullen KE (2011) Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. J Neurophysiol 105: 1798–1814.
[27]  Jones LM, Lee S, Trageser JC, Simons DJ, Keller A (2004) Precise temporal responses in whisker trigeminal neurons. J Neurophysiol 92: 665–668.
[28]  Schleimer JH, Stemmler M (2009) Coding of information in limit cycle oscillators. Phys Rev Lett 103: 248105.
[29]  Ermentrout GB, Galan RF, Urban NN (2007) Relating neural dynamics to neural coding. Phys Rev Lett 99: 248103.
[30]  Gabbiani F (1996) Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons. Network-Computation in Neural Systems 7: 61–85.
[31]  Rowe MH, Neiman AB (2011) Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans. Brain Res. doi:10.1016/j.physletb.2003.10.071.
[32]  Brichta AM, Goldberg JM (2000) Responses to efferent activation and excitatory response-intensity relations of turtle posterior-crista afferents. J Neurophysiol 83: 1224–1242.
[33]  Cox DR, Lewis PAW (1966) The Statistical Analysis of Series of Events. London: Methuen.
[34]  Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D (1991) Reading a neural code. Science 252: 1854–1857.
[35]  Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP (1996) Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. J Neurophysiol 75: 1345–1364.
[36]  Theunissen F, Miller JP (1995) Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci 2: 149–162.
[37]  Chacron MJ (2006) Nonlinear information processing in a model sensory system. J Neurophysiol 95: 2933–2946.
[38]  Yoshimura K, Arai K (2008) Phase reduction of stochastic limit cycle oscillators. Phys Rev Lett 101: 154101.
[39]  Teramae JN, Nakao H, Ermentrout GB (2009) Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys Rev Lett 102: 194102.
[40]  Aldworth ZN, Dimitrov AG, Cummins GI, Gedeon T, Miller JP (2011) Temporal encoding in a nervous system. PLoS Comput Biol 7: e1002041.
[41]  Neiman AB, Russell DF (2005) Models of stochastic biperiodic oscillations and extended serial correlations in electroreceptors of paddlefish. Phys Rev E Stat Nonlin Soft Matter Phys 71: 061915.
[42]  Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J Neurosci 21: 5328–5343.
[43]  Chacron MJ, Lindner B, Longtin A (2004) Noise shaping by interval correlations increases information transfer. Phys Rev Lett 92: 080601.
[44]  Hanggi P, Thomas H (1982) Stochastic processes: Time evolution, symmetries and linear response. Physics Reports 88: 207–319. doi:10.1016/0370-1573(82)90045-X.
[45]  Chacron MJ, Maler L, Bastian J (2005) Electroreceptor neuron dynamics shape information transmission. Nat Neurosci 8: 673–678.
[46]  Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506.
[47]  Teramae JN, Tanaka D (2004) Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93: 204103.
[48]  Ermentrout GB, Galan RF, Urban NN (2008) Reliability, synchrony and noise. Trends Neurosci 31: 428–434.
[49]  Goldobin DS, Pikovsky A (2005) Synchronization and desynchronization of self-sustained oscillators by common noise. Phys Rev E Stat Nonlin Soft Matter Phys 71: 045201.
[50]  Bryant HL Jr, Marcos AR, Segundo JP (1973) Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs. J Neurophysiol 36: 205–225.
[51]  Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A 94: 5411–5416.
[52]  Marsalek P, Koch C, Maunsell J (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A 94: 735–740.
[53]  Farkhooi F, Strube-Bloss MF, Nawrot MP (2009) Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability. Phys Rev E Stat Nonlin Soft Matter Phys 79: 021905.
[54]  vila-Akerberg O, Chacron MJ (2011) Nonrenewal spike train statistics: causes and functional consequences on neural coding. Exp Brain Res 210: 353–371.
[55]  Nguyen H, Neiman AB (2010) Spontaneous dynamics and response properties of a Hodgkin-Huxley-type neuron model driven by harmonic synaptic noise. Eur Phys J Spec Top 187: 179–187.
[56]  Engel TA, Helbig B, Russell DF, Schimansky-Geier L, Neiman AB (2009) Coherent stochastic oscillations enhance signal detection in spiking neurons. Phys Rev E Stat Nonlin Soft Matter Phys 80: 021919.
[57]  Ratnam R, Nelson ME (2000) Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals. J Neurosci 20: 6672–6683.
[58]  Chacron MJ, Lindner B, Longtin A (2004) Noise shaping by interval correlations increases information transfer. Phys Rev Lett 92: 080601.
[59]  Strong SP, de Ruyter van Steveninck RR, Bialek W, Koberle R (1998) On the application of information theory to neural spike trains. Pac Symp Biocomput 621-632:

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133