Leptin acts on the ventral tegmental area (VTA) to modulate neuronal function and feeding behavior in rats and mice. To identify the intracellular effectors of the leptin receptor (Lepr), downstream signal transduction events were assessed for regulation by direct leptin infusion. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and phosphorylated extracellular signal-regulated kinase-1 and -2 (pERK1/2) were increased in the VTA while phospho-AKT (pAKT) was unaffected. Pretreatment of brain slices with the mitogen-activated protein kinase kinase -1 and -2 (MEK1/2) inhibitor U0126 blocked the leptin-mediated decrease in firing frequency of VTA dopamine neurons. The anorexigenic effects of VTA-administered leptin were also blocked by pretreatment with U0126, which effectively blocked phosphorylation of ERK1/2 but not STAT3. These data demonstrate that pERK1/2 may have a critical role in mediating both the electrophysiogical and behavioral effects of leptin receptor signaling in the VTA.
References
[1]
Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, et al. (2002) Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143: 239–246.
[2]
Robertson SA, Leinninger GM, Myers MG Jr (2008) Molecular and neural mediators of leptin action. Physiol Behav 94: 637–642.
[3]
Harvey J (2007) Leptin: a diverse regulator of neuronal function. J Neurochem 100: 307–313.
[4]
Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, et al. (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51: 801–810.
[5]
Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, et al. (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51: 811–822.
[6]
Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, et al. (2002) Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 277: 41547–41555.
[7]
Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, et al. (2004) Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci U S A 101: 4661–4666.
[8]
Bates SH, Dundon TA, Seifert M, Carlson M, Maratos-Flier E, et al. (2004) LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes 53: 3067–3073.
[9]
Piper ML, Unger EK, Myers MG Jr, Xu AW (2008) Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor-expressing neurons. Mol Endocrinol 22: 751–759.
[10]
Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, et al. (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411: 480–484.
[11]
Wolf DH, Numan S, Nestler EJ, Russell DS (1999) Regulation of phospholipase Cgamma in the mesolimbic dopamine system by chronic morphine administration. J Neurochem 73: 1520–1528.
[12]
Numan S, Russell DS (1999) Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain. Brain Res Mol Brain Res 72: 97–102.
[13]
Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964: 107–115.
[14]
Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, et al. (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52: 227–231.
[15]
Rahmouni K, Sigmund CD, Haynes WG, Mark AL (2009) Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58: 536–542.
Wang JH, Wang F, Yang MJ, Yu DF, Wu WN, et al. (2008) Leptin regulated calcium channels of neuropeptide Y and proopiomelanocortin neurons by activation of different signal pathways. Neuroscience 156: 89–98.
[18]
Morton GJ, Blevins JE, Kim F, Matsen M, Figlewicz DP (2009) The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol Endocrinol Metab 297: E202–210.
[19]
Ahima RS, Kelly J, Elmquist JK, Flier JS (1999) Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology 140: 4923–4931.
[20]
Baskin DG, Breininger JF, Schwartz MW (2000) SOCS-3 expression in leptin-sensitive neurons of the hypothalamus of fed and fasted rats. Regul Pept 92: 9–15.
[21]
Lindblom J, Haitina T, Fredriksson R, Schioth HB (2005) Differential regulation of nuclear receptors, neuropeptides and peptide hormones in the hypothalamus and pituitary of food restricted rats. Brain Res Mol Brain Res 133: 37–46.
[22]
Johansson A, Fredriksson R, Winnergren S, Hulting AL, Schioth HB, et al. (2008) The relative impact of chronic food restriction and acute food deprivation on plasma hormone levels and hypothalamic neuropeptide expression. Peptides 29: 1588–1595.
[23]
Myers MG Jr (2004) Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 59: 287–304.
[24]
Carvalheira JB, Torsoni MA, Ueno M, Amaral ME, Araujo EP, et al. (2005) Cross-talk between the insulin and leptin signaling systems in rat hypothalamus. Obes Res 13: 48–57.
[25]
Xu AW, Kaelin CB, Takeda K, Akira S, Schwartz MW, et al. (2005) PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 115: 951–958.
[26]
Hill JW, Williams KW, Ye C, Luo J, Balthasar N, et al. (2008) Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 118: 1796–1805.
[27]
Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, et al. (2004) Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 19: 1524–1534.
[28]
Frias MA, Rebsamen MC, Gerber-Wicht C, Lang U (2007) Prostaglandin E2 activates Stat3 in neonatal rat ventricular cardiomyocytes: A role in cardiac hypertrophy. Cardiovasc Res 73: 57–65.
[29]
G. PaxinosC. Watson 2005 The rat brain in stereotaxic coordinates Amsterdam ; Boston Elsevier Academic Press xliii, [166]
[30]
Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12: 483–488.
[31]
Liu QS, Pu L, Poo MM (2005) Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 437: 1027–1031.
[32]
Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, et al. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273: 18623–18632.