[1] | Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535: 195–204.
|
[2] | Corsellis JAN, Meldrum BS (1976) Epilepsy. In: Blackwood W, Corsellis JAN, editors. Greenfield's Neuropathology. 0 ed. London: Arnold. pp. 771–795.
|
[3] | McNamara JO (1999) Emerging insights into the genesis of epilepsy. Nature 399: A15–22.
|
[4] | Engel J Jr (1996) Excitation and inhibition in epilepsy. Can J Neurol Sci 23: 167–174.
|
[5] | Green RC (1991) Neuropathology and behavior in epilepsy. Epilepsy and Behavior. 0 ed. Wiley-Liss, Inc. pp. 345–359.
|
[6] | Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. Aaps J 8: E298–306.
|
[7] | Mackie K (2008) Signaling via CNS cannabinoid receptors. Mol Cell Endocrinol 286: S60–65.
|
[8] | Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiological reviews 83: 1017–1066.
|
[9] | Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 299–325.
|
[10] | Kathmann M, Bauer U, Schlicker E, Gothert M (1999) Cannabinoid CB1 receptor-mediated inhibition of NMDA- and kainate-stimulated noradrenaline and dopamine release in the brain. Naunyn Schmiedebergs Arch Pharmacol 359: 466–470.
|
[11] | Hajos N, Ledent C, Freund TF (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106: 1–4.
|
[12] | Misner DL, Sullivan JM (1999) Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J Neurosci 19: 6795–6805.
|
[13] | Sullivan JM (1999) Mechanisms of cannabinoid-receptor-mediated inhibition of synaptic transmission in cultured hippocampal pyramidal neurons. J Neurophysiol 82: 1286–1294.
|
[14] | Hajos N, Katona I, Naiem SS, MacKie K, Ledent C, et al. (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 12: 3239–3249.
|
[15] | Ohno-Shosaku T, Tsubokawa H, Mizushima I, Yoneda N, Zimmer A, et al. (2002) Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. J Neurosci 22: 3864–3872.
|
[16] | Varma N, Carlson GC, Ledent C, Alger BE (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. The Journal of neuroscience 21: RC188.
|
[17] | Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, et al. (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19: 4544–4558.
|
[18] | Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307: 129–137.
|
[19] | Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, et al. (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302: 84–88.
|
[20] | Monory K, Massa F, Egertova M, Eder M, Blaudzun H, et al. (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51: 455–466.
|
[21] | Gordon E, Devinsky O (2001) Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 42: 1266–1272.
|
[22] | Keeler MH, Reifler CB (1967) Grand mal convulsions subsequent to marijuana use. Case report. Dis Nerv Syst 28: 474–475.
|
[23] | Lutz B (2004) On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures. Biochem Pharmacol 68: 1691–1698.
|
[24] | Chen K, Neu A, Howard AL, Foldy C, Echegoyen J, et al. (2007) Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 27: 46–58.
|
[25] | Echegoyen J, Armstrong C, Morgan RJ, Soltesz I (2009) Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 85: 123–127.
|
[26] | Goffin K, Van Paesschen W, Van Laere K (2011) In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain 134: 1033–1040.
|
[27] | Ludanyi A, Eross L, Czirjak S, Vajda J, Halasz P, et al. (2008) Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. The Journal of neuroscience 28: 2976–2990.
|
[28] | Magloczky Z, Toth K, Karlocai R, Nagy S, Eross L, et al. (2010) Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 51: Suppl 3115–120.
|
[29] | Falenski KW, Carter DS, Harrison AJ, Martin BR, Blair RE, et al. (2009) Temporal characterization of changes in hippocampal cannabinoid CB(1) receptor expression following pilocarpine-induced status epilepticus. Brain Res 1262: 64–72.
|
[30] | Wyeth MS, Zhang N, Mody I, Houser CR (2010) Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci 30: 8993–9006.
|
[31] | Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69: 619–631.
|
[32] | Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, et al. (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 13: 1113–1119.
|
[33] | Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, et al. (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283: 401–404.
|
[34] | Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 32: 281–294.
|
[35] | Turski WA, Cavalheiro EA, Bortolotto ZA, Mello LM, Schwarz M, et al. (1984) Seizures produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis. Brain research 321: 237–253.
|
[36] | Litt B, Esteller R, Echauz J, D'Alessandro M, Shor R, et al. (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30: 51–64.
|
[37] | Fukudome Y, Ohno-Shosaku T, Matsui M, Omori Y, Fukaya M, et al. (2004) Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur J Neurosci 19: 2682–2692.
|
[38] | Katona I, Urban GM, Wallace M, Ledent C, Jung KM, et al. (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. The Journal of neuroscience 26: 5628–5637.
|
[39] | Gallyas F, Wolff JR, Bottcher H, Zaborszky L (1980) A reliable and sensitive method to localize terminal degeneration and lysosomes in the central nervous system. Stain Technol 55: 299–306.
|
[40] | Magloczky Z, Freund TF (1993) Selective neuronal death in the contralateral hippocampus following unilateral kainate injections into the CA3 subfield. Neuroscience 56: 317–335.
|
[41] | Magloczky Z, Freund TF (1995) Delayed cell death in the contralateral hippocampus following kainate injection into the CA3 subfield. Neuroscience 66: 847–860.
|
[42] | Wittner L, Eross L, Czirjak S, Halasz P, Freund TF, et al. (2005) Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain 128: 138–152.
|
[43] | Obenaus A, Esclapez M, Houser CR (1993) Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures. J Neurosci 13: 4470–4485.
|
[44] | Peng Z, Houser CR (2005) Temporal patterns of fos expression in the dentate gyrus after spontaneous seizures in a mouse model of temporal lobe epilepsy. J Neurosci 25: 7210–7220.
|
[45] | Lowenstein DH, Simon RP, Sharp FR (1990) The pattern of 72-kDA heat shock protein-like immunoreactivity in the rat barin following flurothyl-induced status epilepticus. Brain Res 531: 173–182.
|
[46] | Gass P, Prior P, Kiessling M (1995) Correlation between seizure intensity and stress protein expression after limbic epilepsy in the rat brain. Neuroscience 65: 27–36.
|
[47] | Matyas F, Freund TF, Gulyas AI (2004) Immunocytochemically defined interneuron populations in the hippocampus of mouse strains used in transgenic technology. Hippocampus 14: 460–481.
|
[48] | Haller J, Matyas F, Soproni K, Varga B, Barsy B, et al. (2007) Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission. Eur J Neurosci 25: 2445–2456.
|
[49] | Katona I, Acsady L, Freund TF (1999) Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 88: 37–55.
|
[50] | Nyiri G, Cserep C, Szabadits E, Mackie K, Freund TF (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136: 811–822.
|
[51] | Bhaskaran MD, Smith BN (2010) Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLoS One 5: e10683.
|
[52] | Guggenhuber S, Monory K, Lutz B, Klugmann M (2011) AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 5: e15707.
|
[53] | da Costa NM, Hepp K, Martin KA (2009) A systematic random sampling scheme optimized to detect the proportion of rare synapses in the neuropil. J Neurosci Methods 180: 77–81.
|
[54] | Magloczky Z, Halasz P, Vajda J, Czirjak S, Freund TF (1997) Loss of Calbindin-D28K immunoreactivity from dentate granule cells in human temporal lobe epilepsy. Neuroscience 76: 377–385.
|
[55] | Toth K, Wittner L, Urban Z, Doyle WK, Buzsaki G, et al. (2007) Morphology and synaptic input of substance P receptor-immunoreactive interneurons in control and epileptic human hippocampus. Neuroscience 144: 495–508.
|
[56] | Toth K, Eross L, Vajda J, Halasz P, Freund TF, et al. (2010) Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 133: 2763–2777.
|
[57] | Leite JP, Cavalheiro EA (1995) Effects of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res 20: 93–104.
|
[58] | Wittner L, Magloczky Z, Borhegyi Z, Halasz P, Toth S, et al. (2001) Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neuroscience 108: 587–600.
|
[59] | Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89: 309–380.
|
[60] | Freund TF, Hajos N (2003) Excitement reduces inhibition via endocannabinoids. Neuron 38: 362–365.
|
[61] | Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296: 678–682.
|
[62] | Hsieh C, Brown S, Derleth C, Mackie K (1999) Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 73: 493–501.
|
[63] | Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist's guide to lipidomics. Nat Rev Neurosci 8: 743–754.
|
[64] | Lutz B (2002) Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 66: 123–142.
|
[65] | Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14: 923–930.
|
[66] | Lourenco J, Matias I, Marsicano G, Mulle C (2011) Pharmacological activation of kainate receptors drives endocannabinoid mobilization. J Neurosci 31: 3243–3248.
|
[67] | Cadas H, Gaillet S, Beltramo M, Venance L, Piomelli D (1996) Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J Neurosci 16: 3934–3942.
|
[68] | Cunha JM, Carlini EA, Pereira AE, Ramos OL, Pimentel C, et al. (1980) Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21: 175–185.
|
[69] | Coutts AA, Anavi-Goffer S, Ross RA, MacEwan DJ, Mackie K, et al. (2001) Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J Neurosci 21: 2425–2433.
|
[70] | Tappe-Theodor A, Agarwal N, Katona I, Rubino T, Martini L, et al. (2007) A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 27: 4165–4177.
|
[71] | Gomes I, Jordan BA, Gupta A, Rios C, Trapaidze N, et al. (2001) G protein coupled receptor dimerization: implications in modulating receptor function. J Mol Med 79: 226–242.
|
[72] | Rios CD, Jordan BA, Gomes I, Devi LA (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 92: 71–87.
|
[73] | Falenski KW, Blair RE, Sim-Selley LJ, Martin BR, DeLorenzo RJ (2007) Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy. Neuroscience 146: 1232–1244.
|
[74] | Nadler JV, Perry BW, Cotman CW (1980) Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid. Brain Res 182: 1–9.
|
[75] | Sutula TP, Cascino G, Cavazos JE, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. AnnNeurol 26: 321–330.
|
[76] | Chen K, Ratzliff A, Hilgenberg L, Gulyas A, Freund TF, et al. (2003) Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39: 599–611.
|
[77] | Wittner L, Eross L, Szabo Z, Toth S, Czirjak S, et al. (2002) Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Neuroscience 115: 961–978.
|
[78] | Nusser Z, Hajos N, Somogyi P, Mody I (1998) Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395: 172–177.
|
[79] | Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, et al. (2001) Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 4: 52–62.
|
[80] | Magloczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28: 334–340.
|
[81] | Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298: 1418–1421.
|
[82] | Cossart R, Bernard C, Ben-Ari Y (2005) Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci 28: 108–115.
|
[83] | Fujiwara-Tsukamoto Y, Isomura Y, Nambu A, Takada M (2003) Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience 119: 265–275.
|
[84] | Szabadics J, Varga C, Molnar G, Olah S, Barzo P, et al. (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311: 233–235.
|
[85] | Stein V, Nicoll RA (2003) GABA generates excitement. Neuron 37: 375–378.
|
[86] | van den Pol AN, Obrietan K, Chen G (1996) Excitatory actions of GABA after neuronal trauma. The Journal of neuroscience 16: 4283–4292.
|
[87] | Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39: 807–820.
|