|
遥感学报 2009
Automatic extraction of forest fire line using MODIS data bymulti-spectral image gradient technique
|
Abstract:
From repeat pass SIR-C L band polarimetric SAR interferometric data and fully maximum likelihood inversion decomposition model of PolInSAR, a method for sub-canopy soil moisture estimation using repeat pass SIR-C PolInSAR data is proposed. At the same time, the potential and validity of fully maximum likelihood inversion decomposition model of PolInSAR for sub-canopy soil moisture inversion is investigated. Firstly, from the random oriented volume over ground two layer coherent scattering model and the statistical characteristics of Pol-InSAR coherency matrix, the fully maximum likelihood inversion decomposition model is used to reconstruct or recover the surface polarimetric coherency matrix with volume scattering components significantly removed; then, from recovered surface polarimetric coherency matrix, co-HH, VV and cross-HV polarization backscattering coefficient are obtained, and the sub-canopy soil moisture are inverted from Oh and Dihedral scattering model. At last, Compared the inversion result with the field measurement and the climate data of hetan region from 1951 to 2006, the preliminary result indicates that the proposed method based on fully maximum likelihood inversion decomposition model has enough high inversion accuracy, if the new spaceborne or airborne polarimetric SAR interferometric data with synchronously spaceborne or airborne-ground measurement will be acquired, the validity and accuracy of proposed inversion method will be further investigated and validated.