全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
遥感学报  2003 

Research of Anomaly Detection Approaches Based on Feature Fusion in Hyperspectral Imagery
基于特征层融合的高光谱图像异常检测算法研究

Keywords: hyperspectral image,anomaly detection,low probability detection,OMIS system
高光谱图像
,异常检测算法,特征层融合,低概率检测,图像处理,遥感图像,OMIS,实用性模块化成像光谱仪

Full-Text   Cite this paper   Add to My Lib

Abstract:

An anomaly detection approach based on feature fusion is presented in this paper.All the detection algorithms,aside from anomaly detection,require training pixels of the desired class.Anomaly detection is the detection of scene elements that appear unlikely with respect to a probabilistic feature of the scene.The method needs on prior information,but the result has much false alarm.In this paper,we use low probability detection to fuse the data in feature level;then segment the image and detect anomaly elements.The result eliminates much false alarm and improves the detectability.We apply the method to the data produced by OMIS system and achieve satisfying results.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133