全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Text Clustering Research on the Max Term Contribution Dimension Reduction and Simulated Annealing Algorithm
最大词重降维算法与模拟退火算法相结合的文本聚类方法研究

Keywords: Text clustering,Max term contribution,Character extraction,Simulated annealing
文本聚类
,最大词重,特征提取,模拟退火

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a new algorithm for text character extraction and dimension reduction based on the Max Term Contribution. Its main idea is computing the contribution of each term in the high dimension document-base and extracting the maximum contribution terms to construct a low dimension document-base from the high dimension document-base using the search algorithm. Then a modified K-means clustering method based on the Simulated Annealing (SA) is presented to cluster the low dimension document datum which is obtained by MTC. Finally, some experiments show that the new method can improve the cluster precision.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133