全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study

DOI: 10.1371/journal.pone.0027994

Full-Text   Cite this paper   Add to My Lib

Abstract:

The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC.

References

[1]  Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann N Y Acad Sci 341: 552–563.
[2]  Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, et al. (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31: 227–285. S0098-2997(10)00021-X [pii];10.1016/j.mam.2010.03.002 [doi].
[3]  Young MJ, Bay DC, Hausner G, Court DA (2007) The evolutionary history of mitochondrial porins. BMC Evol Biol 7: 31. 1471-2148-7-31 [pii];10.1186/1471-2148-7-31 [doi].
[4]  Wandrey M, Trevaskis B, Brewin N, Udvardi MK (2004) Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiol 134: 182–193.
[5]  Tateda C, Watanabe K, Kusano T, Takahashi Y (2011) Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J Exp Bot 62: 4773–4783. err113 [pii];10.1093/jxb/err113 [doi].
[6]  De Pinto V, Messina A (2004) Gene Family Expression and Multitopological Localization of Eukaryotic Porin/Voltage Dependent Anion-Selective Channel (VDAC): Intracellular Trafficking and Alternative Splicing. Bacterial and Eukaryotic Porins. pp. 309–337. Wiley-VCH Verlag GmbH & Co. KGaA.
[7]  Benz R (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta 1197: 167–196. 0304-4157(94)90004-3 [pii].
[8]  Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111: 103–111.
[9]  Abrecht H, Wattiez R, Ruysschaert JM, Homble F (2000) Purification and characterization of two voltage-dependent anion channel isoforms from plant seeds. Plant Physiol 124: 1181–1190.
[10]  Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257: 107–115.
[11]  Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157: 271–279.
[12]  Roos N, Benz R, Brdiczka D (1982) Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria. Biochim Biophys Acta 686: 204–214.
[13]  Troll H, Malchow D, Müller-Taubenberger A, Humbel B, Lottspeich F, et al. (1992) Purification, functional characterization, and cDNA sequencing of mitochondrial porin from Dictyostelium discoideum. J Biol Chem 267: 21072–21079.
[14]  Zambrowicz EB, Colombini M (1993) Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior. Biophys J 65: 1093–1100. S0006-3495(93)81148-2 [pii];10.1016/S0006-3495(93)81148-2 [doi].
[15]  Ludwig O, Krause J, Hay R, Benz R (1988) Purification and characterization of the pore forming protein of yeast mitochondrial outer membrane. Eur Biophys J 15: 269–276.
[16]  Freitag H, Neupert W, Benz R (1982) Purification and characterisation of a pore protein of the outer mitochondrial membrane from Neurospora crassa. Eur J Biochem 123: 629–636.
[17]  Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, et al. (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321: 1206–1210. 321/5893/1206 [pii];10.1126/science.1161302 [doi].
[18]  Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, et al. (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 105: 15370–15375. 0808115105 [pii];10.1073/pnas.0808115105 [doi].
[19]  Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, et al. (2008) The crystal structure of mouse VDAC1 at 2.3 ? resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105: 17742–17747. 0809634105 [pii];10.1073/pnas.0809634105 [doi].
[20]  Koebnik R, Locher KP, Van GP (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37: 239–253. mmi1983 [pii].
[21]  Colombini M (2009) The published 3D structure of the VDAC channel: native or not? Trends Biochem Sci 34: 382–389. S0968-0004(09)00118-2 [pii];10.1016/j.tibs.2009.05.001 [doi].
[22]  Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, et al. (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131: 17777–17779. 10.1021/ja907918r [doi].
[23]  Hiller S, Abramson J, Mannella C, Wagner G, Zeth K (2010) The 3D structures of VDAC represent a native conformation. Trends Biochem Sci 35: 514–521. S0968-0004(10)00049-6 [pii];10.1016/j.tibs.2010.03.005 [doi].
[24]  Shanmugavadivu B, Apell HJ, Meins T, Zeth K, Kleinschmidt JH (2007) Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. J Mol Biol 368: 66–78. S0022-2836(07)00130-1 [pii];10.1016/j.jmb.2007.01.066 [doi].
[25]  Guo XW, Smith PR, Cognon B, D'Arcangelis D, Dolginova E, et al. (1995) Molecular design of the voltage-dependent, anion-selective channel in the mitochondrial outer membrane. J Struct Biol 114: 41–59. S1047-8477(85)71004-0 [pii];10.1006/jsbi.1995.1004 [doi].
[26]  Mannella CA (1998) Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol 121: 207–218. S1047-8477(97)93954-X [pii];10.1006/jsbi.1997.3954 [doi].
[27]  Shao L, Kinnally KW, Mannella CA (1996) Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa. Biophys J 71: 778–786. S0006-3495(96)79277-9 [pii];10.1016/S0006-3495(96)79277-9 [doi].
[28]  Koppel DA, Kinnally KW, Masters P, Forte M, Blachly-Dyson E, et al. (1998) Bacterial expression and characterization of the mitochondrial outer membrane channel. Effects of N-terminal modifications. J Biol Chem 273: 13794–13800.
[29]  Choudhary OP, Ujwal R, Kowallis W, Coalson R, Abramson J, et al. (2010) The electrostatics of VDAC: implications for selectivity and gating. J Mol Biol 396: 580–592. S0022-2836(09)01476-4 [pii];10.1016/j.jmb.2009.12.006 [doi].
[30]  Lee KI, Rui H, Pastor RW, Im W (2011) Brownian dynamics simulations of ion transport through the VDAC. Biophys J 100: 611–619. S0006-3495(10)05252-5 [pii];10.1016/j.bpj.2010.12.3708 [doi].
[31]  Rui H, Lee KI, Pastor RW, Im W (2011) Molecular dynamics studies of ion permeation in VDAC. Biophys J 100: 602–610. S0006-3495(10)05255-0 [pii];10.1016/j.bpj.2010.12.3711 [doi].
[32]  De Pinto V, Prezioso G, Thinnes F, Link TA, Palmieri F (1991) Peptide-specific antibodies and proteases as probes of the transmembrane topology of the bovine heart mitochondrial porin. Biochemistry 30: 10191–10200.
[33]  Al Bitar F, Roosens N, Smeyers M, Vauterin M, van Boxtel J, et al. (2003) Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family. Biochimica et Biophysica Acta-Gene Structure and Expression 1625: 43–51.
[34]  Schneider R, Etzkorn M, Giller K, Daebel V, Eisfeld J, et al. (2010) The native conformation of the human VDAC1 N terminus. Angew Chem Int Ed Engl 49: 1882–1885. 10.1002/anie.200906241 [doi].
[35]  Summers WA, Court DA (2010) Origami in outer membrane mimetics: correlating the first detailed images of refolded VDAC with over 20 years of biochemical data. Biochem Cell Biol 88: 425–438. o09-115 [pii];10.1139/o09-115 [doi].
[36]  Villinger S, Briones R, Giller K, Zachariae U, Lange A, et al. (2010) Functional dynamics in the voltage-dependent anion channel. Proc Natl Acad Sci U S A 107: 22546–22551. 1012310108 [pii];10.1073/pnas.1012310108 [doi].
[37]  Mlayeh L, Chatkaew S, Leonetti M, Homble F (2010) Modulation of plant mitochondrial VDAC by phytosterols. Biophys J 99: 2097–2106. S0006-3495(10)00984-7 [pii];10.1016/j.bpj.2010.07.067 [doi].
[38]  Cortese JD, Voglino AL, Hackenbrock CR (1991) Ionic strength of the intermembrane space of intact mitochondria as estimated with fluorescein-BSA delivered by low pH fusion. J Cell Biol 113: 1331–1340.
[39]  Peng S, Blachly-Dyson E, Forte M, Colombini M (1992) Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel. Biophys J 62: 123–131. S0006-3495(92)81799-X [pii];10.1016/S0006-3495(92)81799-X [doi].
[40]  Alcaraz A, Nestorovich EM, Aguilella-Arzo M, Aguilella VM, Bezrukov SM (2004) Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys J 87: 943–957. 10.1529/biophysj.104/043414 [doi];S0006-3495(04)73578-X [pii].
[41]  Alcaraz A, Nestorovich EM, Lopez ML, Garcia-Gimenez E, Bezrukov SM, et al. (2009) Diffusion, exclusion, and specific binding in a large channel: a study of OmpF selectivity inversion. Biophys J 96: 56–66. S0006-3495(08)00032-5 [pii];10.1016/j.bpj.2008.09.024 [doi].
[42]  Kobayashi Y, Nakae T (1985) The mechanism of ion selectivity of OmpF-porin pores of Escherichia coli. Eur J Biochem 151: 231–236.
[43]  Im W, Roux B (2002) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322: 851–869. S0022283602007787 [pii].
[44]  Im W, Roux B (2002) Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J Mol Biol 319: 1177–1197. 10.1016/S0022-2836(02)00380-7 [doi];S0022-2836(02)00380-7 [pii].
[45]  Karshikoff A, Spassov V, Cowan SW, Ladenstein R, Schirmer T (1994) Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol 240: 372–384. S0022-2836(84)71451-3 [pii];10.1006/jmbi.1994.1451 [doi].
[46]  Schirmer T, Phale PS (1999) Brownian dynamics simulation of ion flow through porin channels. J Mol Biol 294: 1159–1167. 10.1006/jmbi.1999.3326 [doi];S0022-2836(99)93326-0 [pii].
[47]  Lopez ML, Aguilella-Arzo M, Aguilella VM, Alcaraz A (2009) Ion selectivity of a biological channel at high concentration ratio: insights on small ion diffusion and binding. J Phys Chem B 113: 8745–8751. 10.1021/jp902267g [doi].
[48]  Garcia-Gimenez E, Alcaraz A, Aguilella VM (2010) Overcharging below the nanoscale: multivalent cations reverse the ion selectivity of a biological channel. Phys Rev E Stat Nonlin Soft Matter Phys 81: 021912.
[49]  Corry B (2004) Theoretical conformation of the closed and open states of the acetylcholine receptor channel. Biochim Biophys Acta 1663: 2–5. 10.1016/j.bbamem.2004.02.006 [doi];S000527360400063X [pii].
[50]  Jogini V, Roux B (2005) Electrostatics of the intracellular vestibule of K+ channels. J Mol Biol 354: 272–288. S0022-2836(05)01096-X [pii];10.1016/j.jmb.2005.09.031 [doi].
[51]  Tai K, Haider S, Grottesi A, Sansom MS (2009) Ion channel gates: comparative analysis of energy barriers. Eur Biophys J 38: 347–354. 10.1007/s00249-008-0377-x [doi].
[52]  Blachly-Dyson E, Peng S, Colombini M, Forte M (1990) Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science 247: 1233–1236.
[53]  De Pinto V, Ludwig O, Krause J, Benz R, Palmieri F (1987) Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochim Biophys Acta 894: 109–119. 0005-2728(87)90180-0 [pii].
[54]  Smack DP, Colombini M (1985) Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiol 79: 1094–1097.
[55]  Abrecht H, Goormaghtigh E, Ruysschaert JM, Homble F (2000) Structure and orientation of two voltage-dependent anion-selective channel isoforms - An attenuated total reflection Fourier-transform infrared spectroscopy study. J Biol Chem 275: 40992–40999.
[56]  Smeyers M, Léonetti M, Goormaghtigh E, Homblé F (2003) Chapter 15 Structure and function of plant membrane ion channels reconstituted in planar lipid bilayers. In: Tien HT, editor. Membrane Science and Technology - Planar Lipid Bilayers (BLMs) and Their Applications. Elsevier. pp. 449–478.
[57]  Liu MY, Colombini M (1992) Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC. Biochim Biophys Acta 1098: 255–260.
[58]  Popp B, Court DA, Benz R, Neupert W, Lill R (1996) The role of the N and C termini of recombinant Neurospora mitochondrial porin in channel formation and voltage-dependent gating. J Biol Chem 271: 13593–13599.
[59]  Ramirez P, Mafe S, Aguilella VM, Alcaraz A (2003) Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport. Phys Rev E Stat Nonlin Soft Matter Phys 68: 011910.
[60]  Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73: 765–783. 10.1002/prot.22102 [doi].
[61]  De Pinto V, al Jamal JA, Palmieri F (1993) Location of the dicyclohexylcarbodiimide-reactive glutamate residue in the bovine heart mitochondrial porin. J Biol Chem 268: 12977–12982.
[62]  Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29: 1859–1865. 10.1002/jcc.20945 [doi].
[63]  Feller SE, Mac Kerell DA Jr (2000) An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids. J Phys Chem B 104: 7510–7515.
[64]  MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, et al. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J Phys Chem B 102: 3586–3616.
[65]  Mackerell AD Jr, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400–1415. 10.1002/jcc.20065 [doi].
[66]  Henin J, Shinoda W, Klein ML (2008) United-atom acyl chains for CHARMM phospholipids. J Phys Chem B 112: 7008–7015. 10.1021/jp800687p [doi].
[67]  Philipps JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable molecular dynamics with NAMD. Journal of Computational Chemistry. J Comput Chem 26: 1781–1802.
[68]  Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–100894.
[69]  Tuckerman M, Berne BR, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97: 1990–1999.
[70]  Andersen HC (1983) Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52: 24–34.
[71]  Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22: 623–625. btk023 [pii];10.1093/bioinformatics/btk023 [doi].
[72]  Holst M, Saied F (1993) Multigrid solution of the Poisson—Boltzmann equation. J Comput Chem 14: 105–113.
[73]  Marrink S-J, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98: 4155–4168.
[74]  Egwolf B, Luo Y, Walters DE, Roux B (2010) Ion selectivity of alpha-hemolysin with beta-cyclodextrin adapter. II. Multi-ion effects studied with grand canonical Monte Carlo/Brownian dynamics simulations. J Phys Chem B 114: 2901–2909. 10.1021/jp906791b [doi].
[75]  Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157: 534–544. S1047-8477(06)00378-9 [pii];10.1016/j.jsb.2006.11.008 [doi].
[76]  Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38. 0263785596000185 [pii].
[77]  Levine BG, Stone JE, Kohlmeyer A (2011) Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units-Radial Distribution Function Histogramming. J Comput Phys 230: 3556–3569. 10.1016/j.jcp.2011.01.048 [doi].
[78]  Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93: 1157–1204.
[79]  Degrève L, da Silva FLB (1999) Large ionic clusters in concentrated aqueous NaCl solution. J Chem Phys 111: 5150–5157.
[80]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
[81]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. 10.1006/jmbi.1990.9999 [doi];S0022-2836(05)80360-2 [pii].
[82]  Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2007) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 35: D5–12. gkl1031 [pii];10.1093/nar/gkl1031 [doi].
[83]  Aksimentiev A, Schulten K (2005) Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88: 3745–3761. S0006-3495(05)73429-9 [pii];10.1529/biophysj.104.058727 [doi].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133