全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

DNA Double-Strand Breaks Induced by Cavitational Mechanical Effects of Ultrasound in Cancer Cell Lines

DOI: 10.1371/journal.pone.0029012

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ultrasonic technologies pervade the medical field: as a long established imaging modality in clinical diagnostics; and, with the emergence of targeted high intensity focused ultrasound, as a means of thermally ablating tumours. In parallel, the potential of [non-thermal] intermediate intensity ultrasound as a minimally invasive therapy is also being rigorously assessed. Here, induction of apoptosis in cancer cells has been observed, although definitive identification of the underlying mechanism has thus far remained elusive. A likely candidate process has been suggested to involve sonochemical activity, where reactive oxygen species (ROS) mediate the generation of DNA single-strand breaks. Here however, we provide compelling new evidence that strongly supports a purely mechanical mechanism. Moreover, by a combination of specific assays (neutral comet tail and staining for γH2AX foci formation) we demonstrate for the first time that US exposure at even moderate intensities exhibits genotoxic potential, through its facility to generate DNA damage across multiple cancer lines. Notably, colocalization assays highlight that ionizing radiation and ultrasound have distinctly different signatures to their respective γH2AX foci formation patterns, likely reflecting the different stress distributions that initiated damage formation. Furthermore, parallel immuno-blotting suggests that DNA-PKcs have a preferential role in the repair of ultrasound-induced damage.

References

[1]  Abdollahi A, Domhan S, Jenne JW, Hallaj M, Dell'Aqua G, et al. (2004) Apoptosis signals in lymphoblasts induced by focused ultrasound. FASEB J 18: 1413–1414.
[2]  Kondo T, Kodaira T, Kano E (1993) Free radical formation induced by ultrasound and its effects on strand breaks in DNA of cultured FM3A cells. Free Radic Res Commin 19: 193–202.
[3]  Honda H, Zhao QL, Kondo T (2002) Effects of dissolved gases and an echo contrast agent on apoptosis induced by ultrasound and its mechanism via the mitochondria-caspase pathway. Untrasound Med Biol 28: 673–682.
[4]  Milowska K, Gabryelak T (2007) Reactive oxygen species and DNA damage after ultrasound exposure. Biomol Eng 24: 263–267.
[5]  Miller DL, Thomas RM (1996) The role of cavitation in the induction of cellular DNA damage by ultrasound and lithotripter shock waves in vitro. Ultrasound Med Biol 22: 681–687.
[6]  Ashush H, Rozenszajn LA, Blass M, Barda-Saad M, Azimov D, et al. (2000) Apoptosis induction of human myeloid leukemia cells by ultrasound exposure. Cancer Res 60: 1014–1020.
[7]  Levy D, Kost J, Meshulam Y, Langer R (1989) Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. J Clin Invest 83: 2074–2078.
[8]  Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K (1999) Induction of cell-membrane porosity by ultrasound. Lancet 353: 1409.
[9]  Boucaud A (2004) Trends in the use of ultrasound-mediated transdermal drug delivery. Drug Discov Today 9: 827–828.
[10]  Prentice P, Cushieri A, Dhilakia K, Prausnitz M, Campbell P (2005) Membrane disruption by optically controlled microbubble cavitation. Nat Phys 107–110.
[11]  Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4: 255–260.
[12]  Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, et al. (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse. PLoS ONE 3: e2175.
[13]  Hassan MA, Buldakov MA, Ogawa R, Zhao QL, Furusawa Y, et al. (2010) Modulation control over ultrasound-mediated gene delivery: evaluating the importance of standing waves. J Control Release 141: 70–76.
[14]  Suzuki R, Oda Y, Utoguchi N, Maruyama K (2010) Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Control Release 149: 36–41.
[15]  Feril LB Jr, Kondo T, Cui ZG, Tabuchi Y, Zhao QL, et al. (2005) Apoptosis induced by sonochemical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett 221: 145–152.
[16]  Furusawa Y, Zhao QL, Hassan MA, Tabuchi Y, Takasaki I, et al. (2010) Ultrasound-induced apoptosis in the presence of Sonazoid. Cancer Lett 288: 107–115.
[17]  Feril LBJ, Kondo T (2004) Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and biosafety of ultrasound. J Rad Res 45: 479–489.
[18]  Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461: 1071–1078.
[19]  L?brich M, Shibata A, Beucher A, Fisher A, Ensminger M, et al. (2010) γH2AX foci analysis for monitoring DNA double-strand break repair: strength, limitation, and optimization. Cell Cycle 9: 662–9.
[20]  Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, et al. (2008) γH2AX and cancer. Nat Rev Cancer 8: 957–967.
[21]  Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905–916.
[22]  Stiff T, O'Driscoll M, Rief N, Iwabuchi K, L?brich M, et al. (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64: 2390–2396.
[23]  Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551–554.
[24]  Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 608–611.
[25]  Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolcular autophosphorylation and dimer dissociation. Nature 421: 499–506.
[26]  Chen BP, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, et al. (2007) Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylation at the Thr-2609 cluster upon DNA double strand break. J Biol Chem 282: 6582–6587.
[27]  Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283: 1–5.
[28]  Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417: 639–650.
[29]  Meek K, Douglas P, Cui X, Ding Q, Lees-Miller SP (2007) trans Autophosphorylation at DNA-dependent protein kinase's two major autophosphorylation site clusters facilitates end processing but not end joining. Mol Cell Biol 27: 3881–3890.
[30]  Xie A, Hartlerode A, Stucki M, Odate S, Puget N, et al. (2007) Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol Cell 28: 1045–1057.
[31]  Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, et al. (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28: 3413–3427.
[32]  Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagno T (2003) Development of novel fluorescent probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278: 3170–3175.
[33]  Ando H, Feril LB Jr, Kondo T, Tabuchi Y, Ogawa R, et al. (2006) An echo-contrast agent, Levovist, lowers the ultrasound intensity required to induce apoptosis of human leukemia cells. Cancer Lett 8: 37–45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133