全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Problems existing in ARIMA model of hydrologic series and some improvement suggestions
水文序列ARIMA模型应用中存在的问题与改进方式

Keywords: 水文过程,季节性ARIMA,聚类,回归,降水量

Full-Text   Cite this paper   Add to My Lib

Abstract:

经典的ARMIA模型应用是对水文过程年际月变化所形成的时序数据进行计算处理,而忽略了水文过程平稳性检验和月际年变化对时序预测结果的影响.本文在对这一问题讨论的基础上,基于聚类提取分类后月份的特征,利用回归分析建立特征量和月水文数据间的关系,通过差分对特征量时序做平稳性处理,使用ARIMA模型按类预测特征量,由此,提出了一种新的挖掘水文时序月际年变化信息的方法,建立了改进的ARIMA模型及预测方法.作者以兰州降水站为例进行了应用验证,研究结果表明,改进后的ARIMA模型的精度要明显高于季节ARIMA模型,其平均残差达到了9.41,预报精度提高了21%,效果十分明显.最后就改进后的ARIMA模型的应用给出了进一步的研究方向.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133