Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway.
References
[1]
Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, et al. (1997) A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89: 693–702.
[2]
Meakin SO, MacDonald JI, Gryz EA, Kubu CJ, Verdi JM (1999) The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J Biol Chem 274: 9861–9870.
[3]
Rabin SJ, Cleghon V, Kaplan DR (1993) SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC12 cells. Mol Cell Biol 13: 2203–2213.
[4]
Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99: 1319–1325.
[5]
Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, et al. (2000) FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 20: 979–989.
[6]
Xu H, Lee KW, Goldfarb M (1998) Novel recognition motif on fibroblast growth factor receptor mediates direct association and activation of SNT adapter proteins. J Biol Chem 273: 17987–17990.
[7]
McDougall K, Kubu C, Verdi JM, Meakin SO (2001) Developmental expression patterns of the signaling adapters FRS-2 and FRS-3 during early embryogenesis. Mech Dev 103: 145–148.
[8]
Gotoh N, Manova K, Tanaka S, Murohashi M, Hadari Y, et al. (2005) The docking protein FRS2alpha is an essential component of multiple fibroblast growth factor responses during early mouse development. Mol Cell Biol 25: 4105–4116.
[9]
Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J (2001) Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci U S A 98: 8578–8583.
[10]
Gotoh N, Laks S, Nakashima M, Lax I, Schlessinger J (2004) FRS2 family docking proteins with overlapping roles in activation of MAP kinase have distinct spatial-temporal patterns of expression of their transcripts. FEBS Lett 564: 14–18.
[11]
Dixon SJ, MacDonald JI, Robinson KN, Kubu CJ, Meakin SO (2006) Trk receptor binding and neurotrophin/fibroblast growth factor (FGF)-dependent activation of the FGF receptor substrate (FRS)-3. Biochim Biophys Acta 1763: 366–380.
[12]
Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, et al. (2001) Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction. Oncogene 20: 1929–1938.
[13]
Melillo RM, Santoro M, Ong SH, Billaud M, Fusco A, et al. (2001) Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol 21: 4177–4187.
[14]
Lax I, Wong A, Lamothe B, Lee A, Frost A, et al. (2002) The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Mol Cell 10: 709–719.
[15]
Wu Y, Chen Z, Ullrich A (2003) EGFR and FGFR signaling through FRS2 is subject to negative feedback control by ERK1/2. Biol Chem 384: 1215–1226.
[16]
Kao S, Jaiswal RK, Kolch W, Landreth GE (2001) Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 276: 18169–18177.
[17]
Xu H, Goldfarb M (2001) Multiple effector domains within SNT1 coordinate ERK activation and neuronal differentiation of PC12 cells. J Biol Chem 276: 13049–13056.
[18]
Delahaye L, Rocchi S, Van Obberghen E (2000) Potential involvement of FRS2 in insulin signaling. Endocrinology 141: 621–628.
[19]
Hadari YR, Kouhara H, Lax I, Schlessinger J (1998) Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol 18: 3966–3973.
[20]
Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, et al. (2001) Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci U S A 98: 6074–6079.
[21]
Babuke T, Tikkanen R (2007) Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 86: 525–532.
[22]
Morrow IC, Parton RG (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6: 725–740.
[23]
Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, et al. (2002) Flotillin-1/reggie-2 traffics to surface raft domains via a novel golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem 277: 48834–48841.
[24]
Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Luers G, et al. (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378: 509–518.
[25]
Babuke T, Ruonala M, Meister M, Amaddii M, Genzler C, et al. (2009) Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal 21: 1287–1297.
[26]
Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, et al. (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407: 202–207.
[27]
Neumann-Giesen C, Fernow I, Amaddii M, Tikkanen R (2007) Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci 120: 395–406.
[28]
Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, et al. (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410: 944–948.
Dermine JF, Duclos S, Garin J, St-Louis F, Rea S, et al. (2001) Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 276: 18507–18512.
[31]
Munderloh C, Solis GP, Bodrikov V, Jaeger FA, Wiechers M, et al. (2009) Reggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons. J Neurosci 29: 6607–6615.
[32]
Schulte T, Paschke KA, Laessing U, Lottspeich F, Stuermer CA (1997) Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 124: 577–587.
[33]
Kimura A, Baumann CA, Chiang SH, Saltiel AR (2001) The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc Natl Acad Sci U S A 98: 9098–9103.
[34]
Zhang M, Liu J, Cheng A, Deyoung SM, Chen X, et al. (2006) CAP interacts with cytoskeletal proteins and regulates adhesion-mediated ERK activation and motility. EMBO J 25: 5284–5293.
[35]
Fernow I, Tomasovic A, Siehoff-Icking A, Tikkanen R (2009) Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases. BMC Cell Biol 10: 80.
[36]
Solis GP, Hoegg M, Munderloh C, Schrock Y, Malaga-Trillo E, et al. (2007) Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem J 403: 313–322.
[37]
Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451: 1–16.
[38]
Limpert AS, Karlo JC, Landreth GE (2007) Nerve growth factor stimulates the concentration of TrkA within lipid rafts and extracellular signal-regulated kinase activation through c-Cbl-associated protein. Mol Cell Biol 27: 5686–5698.
Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929–942.
[41]
Burgar HR, Burns HD, Elsden JL, Lalioti MD, Heath JK (2002) Association of the signaling adaptor FRS2 with fibroblast growth factor receptor 1 (Fgfr1) is mediated by alternative splicing of the juxtamembrane domain. J Biol Chem 277: 4018–4023.
[42]
Zhang Y, McKeehan K, Lin Y, Zhang J, Wang F (2008) Fibroblast growth factor receptor 1 (FGFR1) tyrosine phosphorylation regulates binding of FGFR substrate 2alpha (FRS2alpha) but not FRS2 to the receptor. Mol Endocrinol 22: 167–175.
[43]
Liu J, Kimura A, Baumann CA, Saltiel AR (2002) APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol 22: 3599–3609.
[44]
Qian X, Riccio A, Zhang Y, Ginty DD (1998) Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21: 1017–1029.
[45]
Huang L, Watanabe M, Chikamori M, Kido Y, Yamamoto T, et al. (2006) Unique role of SNT-2/FRS2beta/FRS3 docking/adaptor protein for negative regulation in EGF receptor tyrosine kinase signaling pathways. Oncogene 25: 6457–6466.
[46]
Wong A, Lamothe B, Lee A, Schlessinger J, Lax I (2002) FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc Natl Acad Sci U S A 99: 6684–6689.
[47]
Kato N, Nakanishi M, Hirashima N (2006) Flotillin-1 regulates IgE receptor-mediated signaling in rat basophilic leukemia (RBL-2H3) cells. J Immunol 177: 147–154.
[48]
Langhorst MF, Jaeger FA, Mueller S, Sven Hartmann L, Luxenhofer G, et al. (2008) Reggies/flotillins regulate cytoskeletal remodeling during neuronal differentiation via CAP/ponsin and Rho GTPases. Eur J Cell Biol 87: 921–931.
[49]
Sugawara Y, Nishii H, Takahashi T, Yamauchi J, Mizuno N, et al. (2007) The lipid raft proteins flotillins/reggies interact with Galphaq and are involved in Gq-mediated p38 mitogen-activated protein kinase activation through tyrosine kinase. Cell Signal 19: 1301–1308.
[50]
Vomastek T, Schaeffer HJ, Tarcsafalvi A, Smolkin ME, Bissonette EA, et al. (2004) Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. Proc Natl Acad Sci U S A 101: 6981–6986.
[51]
Hopfer U, Hopfer H, Jablonski K, Stahl RA, Wolf G (2006) The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J Biol Chem 281: 8645–8655.
[52]
Fernow I, Icking A, Tikkanen R (2007) Reggie-1 and reggie-2 localize in non-caveolar rafts in epithelial cells: cellular localization is not dependent on the expression of caveolin proteins. Eur J Cell Biol 86: 345–352.