全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields

DOI: 10.1371/journal.pone.0029268

Full-Text   Cite this paper   Add to My Lib

Abstract:

Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.

References

[1]  vanEngelsdorp D, Underwood R, Caron D, Hayes J (2007) An estimate of managed colony losses in the winter of 2006–2007: A report commissioned by the Apiary Inspectors of America. Am Bee J 147: 599–603.
[2]  vanEngelsdorp D, Hayes J, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3: 1–6 e4071.
[3]  Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, et al. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351–354.
[4]  Alaux C, Brunet JT, Dussaubat C, Mondet F, Tchamitchan S, et al. (2009) Interactions between Nosema microspores and a neonicotinoid weaken honey bees. Env Microbiol 12: 774–782.
[5]  Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, et al. (2010) High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5: e9754.
[6]  Wu J, Anelli C, Sheppard W (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS ONE 6: e14720.
[7]  Jeschke P, Nauen R (2008) Neonicotinoids – from zero to hero in insecticide chemistry, Pest Mgt Sci 64: 1084–1098.
[8]  US Environmental Protection Agency, Office of Pesticide Programs. Factsheet Clothianidin (2003) EPA Publication 7501C; www.epa.gov/opprd001/factsheets/clothian?idin.pdf.
[9]  National Agriculture Statistics Service (NASS), online database: Crop production 2010 summary (2010) Available: http://usda.mannlib.cornell.edu/MannUsda?/viewDocumentInfo.do?documentID=10471. Accessed 2011 July 10.
[10]  Iwasa T, Motoyama N, Ambrose JT, Roe RM (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23: 371–378.
[11]  National Agriculture Statistics Service (NASS) online database (2010) Indiana crop and weather report, report for week ending April 25, 2010. Available: www.nass.usda.gov. Accessed 2011 April 15.
[12]  US Environmental Protection Agency, Office of Pesticide Programs. Decision documents for atrazine (2003) Available: http://www.epa.gov/oppsrrd1/REDs/atrazin?e_combined_docs.pdf. Accessed 2011 April 15.
[13]  Decourtye A, Lacassie E, Pham-Delegue M (2003) Learning performances of honey bees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Mgt Sci 59: 269–278.
[14]  Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthopods. Annu Rev Entomol 52: 81–106.
[15]  Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicol 19: 207–215.
[16]  Cutler GC, Scott-Dupree C (2007) Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. J Econ Entomol 100: 765–772.
[17]  Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, et al. (2006) A survey of pesticide residues in pollen loads collected by honey bees in France. J Econ Entomol 99: 253–262.
[18]  Chauzat MP, Carpentier P, Martel AC, Bougeard S, Cougoule N, et al. (2009) Influence of pesticide residues on honey bee (Hymentoptera: Apidae) colony health. Environ Entomol 38: 514–523.
[19]  Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, et al. (2009) Translocation of neonicotinoid insecticides from coated seeds to guttation drops: a novel way of intoxication for bees. J Econ Entomol 102: 1808–1815.
[20]  Greatti M, Barbattini R, Stravisi A, Sabatini AG, Rossi S (2006) Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho dressed seeds. Bull Insectol 59: 99–103.
[21]  Tremolada P, Mazzoleni M, Saliu F, Colombo M, Vighi M (2010) Field trial for evaluating the effects on honey bees of corn sown using Cruiser and Celest xl treated seeds. Bull Environ Contam Toxicol 85: 229–234.
[22]  Girolami V, Marzaro M, Vivan L, Mazzon L, Greatti M, et al. (2011) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. doi:10.1111/j.1439-0418.2011.01648.x.
[23]  Laurino D, Porporato M, Patetta A, Manino A (2011) Toxicity of neonicotinoid insecticides to honey bees: laboratory tests. Bull Insectol 64: 107–113.
[24]  US Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention (2011) PC Code: 044309. Memorandum: Clothianidin registration of Prosper T400 seed treatment on mustard seed and Poncho/Votivo seed treatment on cotton. (2010). Available: www.epa.gov/pesticides/chem_search/clear?ed_reviews/csr_PC-044309_2-Nov-10_b.pdf Accessed 2011 Aug 1.
[25]  Ginsberg HS (1974) Ecology of bees in an old field. Ecology 64: 165–175.
[26]  Bonmatin JM, Marchand PA, Charvet R, Moineau I, Bengsch ER, et al. (2005) Quantification of imidacloprid update in maize crops. J Agri Food Chem 53: 5336–5341.
[27]  Rortais A, Arnold G, Hahm MP, Touffet-Briens F (2005) Modes of honey bee exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36: 71–83.
[28]  Paul PA, Madden LV, Bradley CA, Robertson AE, Munkvold GP, et al. (2011) Meta-analysis of yield response of hybrid field corn to foliar fungicides in the US corn belt. doi:10.1094/phyto-03-11-0091.
[29]  Schmuck R, Stadler T, Schmidt HW (2003) Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honey bee (Apis mellifera L, Hymenoptera). Pest Mgt Sci 59: 279–286.
[30]  Lydy M, Belden J, Wheelock C, Hammock B, Denton D (2004) Challenges in regulating pesticide mixtures. Ecology and Society 9(6): 1.
[31]  Decourtye A, Devillers J (2010) pp. 85–96.
[32]  Vidau C, Diogon M, Aufauvre J, Fontbonne R, Vigues B, et al. (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honey bees previously infected by Nosema ceranae. PLoS One 6: e21550.
[33]  Thompson HM (2010) Risk assessment for honey bees and pesticides: recent developments and ‘new issues’. Pest Mgt Sci 66: 1157–1162.
[34]  Anastassides M, Lehotay SJ, Stajnbaher D, Schenk FJ (2003) Fast easy multiresidue method employing acetonitrile partitioning and ‘dispersive solid phase extraction’ for determination of pesticide residues in produce. J AOAC Int 86: 412–431.
[35]  Kiesselbach TA (1949) The structure and reproduction of corn. Research Bulletin 161. Lincoln, NE: Univ. of Nebraska, College of Agriculture.
[36]  Deere & Company, Publication A83046Ready to plant guide. Available: http://www.deere.com/en_US/ag/media/pdf/?ready_to_plant/rtp_guide.pdf. Accessed 2011 Jun 20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133