全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Loss of Col3a1, the Gene for Ehlers-Danlos Syndrome Type IV, Results in Neocortical Dyslamination

DOI: 10.1371/journal.pone.0029767

Full-Text   Cite this paper   Add to My Lib

Abstract:

It has recently been discovered that Collagen III, the encoded protein of the type IV Ehlers-Danlos Syndrome (EDS) gene, is one of the major constituents of the pial basement membrane (BM) and serves as the ligand for GPR56. Mutations in GPR56 cause a severe human brain malformation called bilateral frontoparietal polymicrogyria, in which neurons transmigrate through the BM causing severe mental retardation and frequent seizures. To further characterize the brain phenotype of Col3a1 knockout mice, we performed a detailed histological analysis. We observed a cobblestone-like cortical malformation, with BM breakdown and marginal zone heterotopias in Col3a1?/? mouse brains. Surprisingly, the pial BM appeared intact at early stages of development but starting as early as embryonic day (E) 11.5, prominent BM defects were observed and accompanied by neuronal overmigration. Although collagen III is expressed in meningeal fibroblasts (MFs), Col3a1?/? MFs present no obvious defects. Furthermore, the expression and posttranslational modification of α-dystroglycan was undisturbed in Col3a1?/? mice. Based on the previous finding that mutations in COL3A1 cause type IV EDS, our study indicates a possible common pathological pathway linking connective tissue diseases and brain malformations.

References

[1]  Olson EC, Walsh CA (2002) Smooth, rough and upside-down neocortical development. Curr Opin Genet Dev 12: 320–327.
[2]  Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119: 199–207.
[3]  Chang BS, Piao X, Bodell A, Basel-Vanagaite L, Straussberg R, et al. (2003) Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16. Ann Neurol 53: 596–606.
[4]  Piao X, Basel-Vanagaite L, Straussberg R, Grant PE, Pugh EW, et al. (2002) An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21. Am J Hum Genet 70: 1028–1033.
[5]  Piao X, Chang BS, Bodell A, Woods K, Benzeev B, et al. (2005) Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 58: 680–687.
[6]  Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, et al. (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303: 2033–2036.
[7]  Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N, et al. (2010) GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133: 3194–3209.
[8]  Li S, Jin Z, Koirala S, Bu L, Xu L, et al. (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28: 5817–5826.
[9]  Pope FM, Martin GR, Lichtenstein JR, Penttinen R, Gerson B, et al. (1975) Patients with Ehlers-Danlos syndrome type IV lack type III collagen. Proc Natl Acad Sci U S A 72: 1314–1316.
[10]  Germain DP (2007) Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis 2: 32.
[11]  Kontusaari S, Tromp G, Kuivaniemi H, Romanic AM, Prockop DJ (1990) A mutation in the gene for type III procollagen (COL3A1) in a family with aortic aneurysms. J Clin Invest 86: 1465–1473.
[12]  Kuivaniemi H, Tromp G, Bergfeld WF, Kay M, Helm TN (1995) Ehlers-Danlos syndrome type IV: a single base substitution of the last nucleotide of exon 34 in COL3A1 leads to exon skipping. J Invest Dermatol 105: 352–356.
[13]  Prockop DJ, Kivirikko KI (1984) Heritable diseases of collagen. N Engl J Med 311: 376–386.
[14]  Schwarze U, Schievink WI, Petty E, Jaff MR, Babovic-Vuksanovic D, et al. (2001) Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Hum Genet 69: 989–1001.
[15]  Luo R, Jeong SJ, Jin Z, Strokes N, Li S, et al. (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108: 12925–30.
[16]  Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A 94: 1852–1856.
[17]  Englund C, Fink A, Lau C, Pham D, Daza RA, et al. (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25: 247–251.
[18]  Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47: 817–831.
[19]  Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, et al. (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol 479: 168–180.
[20]  Rakic P (2003) Elusive radial glial cells: historical and evolutionary perspective. Glia 43: 19–32.
[21]  Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4: 496–505.
[22]  Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005–1039.
[23]  Inoue T, Ogawa M, Mikoshiba K, Aruga J (2008) Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly. J Neurosci 28: 4712–4725.
[24]  Sievers J, Pehlemann FW, Gude S, Berry M (1994) Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23: 135–149.
[25]  Zarbalis K, Siegenthaler JA, Choe Y, May SR, Peterson AS, et al. (2007) Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development. Proc Natl Acad Sci U S A 104: 14002–14007.
[26]  Henry MD, Campbell KP (1998) A role for dystroglycan in basement membrane assembly. Cell 95: 859–870.
[27]  Williamson RA, Henry MD, Daniels KJ, Hrstka RF, Lee JC, et al. (1997) Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum Mol Genet 6: 831–841.
[28]  Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, et al. (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418: 417–422.
[29]  Labelle-Dumais C, Dilworth DJ, Harrington EP, de Leau M, Lyons D, et al. (2011) COL4A1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and Walker-Warburg syndrome in humans. PLoS Genet 7: e1002062.
[30]  Georges-Labouesse E, Mark M, Messaddeq N, Gansmuller A (1998) Essential role of alpha 6 integrins in cortical and retinal lamination. Curr Biol 8: 983–986.
[31]  De Arcangelis A, Mark M, Kreidberg J, Sorokin L, Georges-Labouesse E (1999) Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development 126: 3957–3968.
[32]  Graus-Porta D, Blaess S, Senften M, Littlewood-Evans A, Damsky C, et al. (2001) Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367–379.
[33]  Halfter W, Dong S, Yip YP, Willem M, Mayer U (2002) A critical function of the pial basement membrane in cortical histogenesis. J Neurosci 22: 6029–6040.
[34]  Beggs HE, Schahin-Reed D, Zang K, Goebbels S, Nave KA, et al. (2003) FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron 40: 501–514.
[35]  Niewmierzycka A, Mills J, St-Arnaud R, Dedhar S, Reichardt LF (2005) Integrin-linked kinase deletion from mouse cortex results in cortical lamination defects resembling cobblestone lissencephaly. J Neurosci 25: 7022–7031.
[36]  Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Gotz M (2006) Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133: 3245–3254.
[37]  Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, et al. (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147: 1109–1122.
[38]  Little KD, Hemler ME, Stipp CS (2004) Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell 15: 2375–2387.
[39]  Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5: 136–148.
[40]  Parrini E, Ramazzotti A, Dobyns WB, Mei D, Moro F, et al. (2006) Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 129: 1892–1906.
[41]  Plancke A, Holder-Espinasse M, Rigau V, Manouvrier S, Claustres M, et al. (2009) Homozygosity for a null allele of COL3A1 results in recessive Ehlers-Danlos syndrome. Eur J Hum Genet 17: 1411–1416.
[42]  Vuorio E, de Crombrugghe B (1990) The family of collagen genes. Annu Rev Biochem 59: 837–872.
[43]  Piezzi RS, Guzman JA, Pelzer LE, Scardapane L, Dominguez S (1984) Biological role of the pineal. Responses to the environmental photoperiod. Arch Biol Med Exp (Santiago) 17: 273–282.
[44]  Epstein EH Jr, Munderloh NH (1975) Isolation and characterization of CNBr peptides of human (alpha 1 (III))3 collagen and tissue distribution of (alpha 1 (I))2 alpha 2 and (alpha 1 (III))3 collagens. J Biol Chem 250: 9304–9312.
[45]  Bornstein P, Sage H (1980) Structurally distinct collagen types. Annu Rev Biochem 49: 957–1003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133