全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Low CXCL13 Expression, Splenic Lymphoid Tissue Atrophy and Germinal Center Disruption in Severe Canine Visceral Leishmaniasis

DOI: 10.1371/journal.pone.0029103

Full-Text   Cite this paper   Add to My Lib

Abstract:

Visceral leishmaniasis is associated with atrophy and histological disorganization of splenic compartments. In this paper, we compared organized and disorganized splenic lymphoid tissue from dogs naturally infected with Leishmania infantum assessing the size of the white pulp compartments, the distribution of T, B and S100+ dendritic cells, using immunohistochemistry and morphometry and the expression of CCR7 and the cytokines, CXCL13, lymphotoxin (LT)-α, LT-β, CCL19, CCL21, TNF-α, IL-10, IFN-γ and TGF-β, using by real time RT-PCR. The lymphoid follicles and marginal zones were smaller (3.2 and 1.9 times, respectively; Mann-Whitney, P<0.02) in animals with disorganized splenic tissue in comparison to those with organized splenic lymphoid tissue. In spleens with disorganized lymphoid tissue, the numbers of T cells and S100+ dendritic cells were decreased in the follicles, and the numbers of B cells were reduced in both the follicles and marginal zones. CXCL13 mRNA expression was lower in animals with disorganized lymphoid tissue (0.5±0.4) compared to those with organized lymphoid tissue (2.7±2.9, both relative to 18S expression, P = 0.01). These changes in the spleen were associated with higher frequency of severe disease (7/12) in the animals with disorganized than in animals with organized (2/13, Chi-square, P = 0.01) splenic lymphoid tissue. The data presented herein suggest that natural infection with Leishmania infantum is associated with the impairment of follicular dendritic cells, CXCL13 expression, B cell migration and germinal center formation and associates these changes with severe clinical forms of visceral leishmaniasis. Furthermore the fact that this work uses dogs naturally infected with Leishmania infantum emphasizes the relevance of the data presented herein for the knowledge on the canine and human visceral leishmaniasis.

References

[1]  Quinnell RJ, Courtenay O (2009) Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 136: 1915–1934.
[2]  Badaro R, Jones TC, Lorenco R, Cerf BJ, Sampaio D, et al. (1986) A prospective study of visceral leishmaniasis in an endemic area of Brazil. J Infect Dis 154: 639–649.
[3]  Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, et al. (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5: 873–882.
[4]  Andrade TM, Carvalho EM, Rocha H (1990) Bacterial infections in patients with visceral leishmaniasis. J Infect Dis 162: 1354–1359.
[5]  Silva ES, Gontijo CM, Pacheco RS, Fiuza VO, Brazil RP (2001) Visceral leishmaniasis in the Metropolitan Region of Belo Horizonte, State of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 96: 285–291.
[6]  Reis AB, Teixeira-Carvalho A, Vale AM, Marques MJ, Giunchetti RC, et al. (2006) Isotype patterns of immunoglobulins: hallmarks for clinical status and tissue parasite density in Brazilian dogs naturally infected by Leishmania (Leishmania) chagasi. Vet Immunol Immunopathol 112: 102–116.
[7]  Paranhos-Silva M, Freitas LA, Santos WC, Grimaldi GJ, Pontes-de-Carvalho LC, et al. (1996) A cross-sectional serodiagnostic survey of canine leishmaniasis due to Leishmania chagasi. Am J Trop Med Hyg 55: 39–44.
[8]  Quinnell RJ, Courtenay O, Garcez L, Dye C (1997) The epidemiology of canine leishmaniasis: transmission rates estimated from a cohort study in Amazonian Brazil. Parasitology 115(Pt 2): 143–156.
[9]  Veress B, Abdalla RE, El Hassan AM (1983) Visceral spreading depletion of thymus-dependent regions and amyloidosis in mice and hamsters infected intradermally with Leishmania isolated from Sudanese cutaneous leishmaniasis. Br J Exp Pathol 64: 505–514.
[10]  Santana CC, Vassallo J, de Freitas LA, Oliveira GG, Pontes-de-Carvalho LC, et al. (2008) Inflammation and structural changes of splenic lymphoid tissue in visceral leishmaniasis: a study on naturally infected dogs. Parasite Immunol 30: 515–524.
[11]  Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5: 606–616.
[12]  Hansen K, Singer DB (2001) Asplenic-hyposplenic overwhelming sepsis: postsplenectomy sepsis revisited. Pediatr Dev Pathol 4: 105–121.
[13]  Solano-Gallego L, Trotta M, Carli E, Carcy B, Caldin M, et al. (2008) Babesia canis canis and Babesia canis vogeli clinicopathological findings and DNA detection by means of PCR-RFLP in blood from Italian dogs suspected of tick-borne disease. Vet Parasitol 157: 211–221.
[14]  Kemming G, Messick JB, Mueller W, Enders G, Meisner F, et al. (2004) Can we continue research in splenectomized dogs? Mycoplasma haemocanis: old problem–new insight. Eur Surg Res 36: 198–205.
[15]  Steiniger B, Barth P (1999) Microanatomy and function of the spleen;. In: Beck F, Brown D, Christ B, Kriz W, Marani E, et al., editors. Berlin: Springer Verlag.. 101 p.
[16]  Veress B, Omer A, Satir AA, El Hassan AM (1977) Morphology of the spleen and lymph nodes in fatal visceral leishmaniasis. Immunology 33: 605–610.
[17]  Smelt SC, Engwerda CR, McCrossen M, Kaye PM (1997) Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J Immunol 158: 3813–3821.
[18]  Engwerda CR, Ato M, Cotterell SE, Mynott TL, Tschannerl A, et al. (2002) A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol 161: 429–437.
[19]  Ato M, Nakano H, Kakiuchi T, Kaye PM (2004) Localization of marginal zone macrophages is regulated by C-C chemokine ligands 21/19. J Immunol 173: 4815–4820.
[20]  Melby PC, Tabares A, Restrepo BI, Cardona AE, McGuff HS, et al. (2001) Leishmania donovani: evolution and architecture of the splenic cellular immune response related to control of infection. Exp Parasitol 99: 17–25.
[21]  Ato M, Stager S, Engwerda CR, Kaye PM (2002) Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol 3: 1185–1191.
[22]  Carrion J, Nieto A, Iborra S, Iniesta V, Soto M, et al. (2006) Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunol 28: 173–183.
[23]  Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, et al. (1999) Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189: 403–412.
[24]  Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C, et al. (2004) Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 5: 713–720.
[25]  Ato M, Maroof A, Zubairi S, Nakano H, Kakiuchi T, et al. (2006) Loss of dendritic cell migration and impaired resistance to Leishmania donovani infection in mice deficient in CCL19 and CCL21. J Immunol 176: 5486–5493.
[26]  Dye C (1996) The logic of visceral leishmaniasis control. Am J Trop Med Hyg 55: 125–130.
[27]  Saldanha Machado CJ, Tereza A, Filipecki P, Teixeira M (2009) Current Brazilian law on animal experimentation. Science 324: 1643–1644.
[28]  Ministério da Saúde do Brasil S (2006) Manual de vigilancia e controle da leishmaniose visceral: Ministério da Saúde - Secretaria de Vigilancia em Saúde.
[29]  Dos-Santos WL, Jesus EE, Paranhos-Silva M, Pereira AM, Santos JC, et al. (2008) Associations among immunological, parasitological and clinical parameters in canine visceral leishmaniasis: Emaciation, spleen parasitism, specific antibodies and leishmanin skin test reaction. Vet Immunol Immunopathol 123: 251–259.
[30]  Ruiz FL, Alessi AC, Chagas CA, Pinto GA, Vassallo J (2005) Immunohistochemistry in diagnostic veterinary pathology: a critical review. J Bras Patol Med Lab 41: 263–270.
[31]  Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34: 455–465.
[32]  Rodrigues CA, Batista LF, Filho RS, Santos CdaS, Pinheiro CG, et al. (2009) IFN-gamma expression is up-regulated by peripheral blood mononuclear cells (PBMC) from non-exposed dogs upon Leishmania chagasi promastigote stimulation in vitro. Vet Immunol Immunopathol 127: 382–388.
[33]  Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, et al. (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25: 386–401.
[34]  Bossolasco S, Gaiera G, Olchini D, Gulletta M, Martello L, et al. (2003) Real-time PCR assay for clinical management of human immunodeficiency virus-infected patients with visceral leishmaniasis. J Clin Microbiol 41: 5080–5084.
[35]  Glantz SA (1997) Primer of Bio-Statistics, fourth ed. McGraw-Hill, New York. 1–473. San Francisco: McGraw-Hill..
[36]  Cocchia D, Tiberio G, Santarelli R, Michetti F (1983) S-100 protein in “follicular dendritic” cells or rat lymphoid organs. An immunochemical and immunocytochemical study. Cell Tissue Res 230: 95–103.
[37]  Carbone A, Manconi R, Poletti A, Volpe R (1988) Heterogeneous immunostaining patterns of follicular dendritic reticulum cells in human lymphoid tissue with selected antibodies reactive with different cell lineages. Hum Pathol 19: 51–56.
[38]  Benedict CA, De Trez C, Schneider K, Ha S, Patterson G, et al. (2006) Specific Remodeling of Splenic Architecture by Cytomegalovirus. PLoS Pathog 2: e16.
[39]  Andrade ZA, Andrade SG (1966) [Some new aspects of the kala-azar pathology. (Morphologic study of 13 autopsy cases)]. Rev Inst Med Trop Sao Paulo 8: 259–266.
[40]  Tryphonas L, Zawidzka Z, Bernard MA, Janzen EA (1977) Visceral leishmaniasis in a dog: clinical, hematological and pathological observations. Can J Comp Med 41: 1–12.
[41]  Keenan CM, Hendricks LD, Lightner L, Johnson AJ (1984) Visceral leishmaniasis in the German shepherd dog. II. Pathology. Vet Pathol 21: 80–86.
[42]  Shi K, Hayashida K, Kaneko M, Hashimoto J, Tomita T, et al. (2001) Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 166: 650–655.
[43]  Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, et al. (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87: 1037–1047.
[44]  Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, et al. (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406: 309–314.
[45]  Barral-Netto M, Badaro R, Barral A, Almeida RP, Santos SB, et al. (1991) Tumor necrosis factor (cachectin) in human visceral leishmaniasis. J Infect Dis 163: 853–857.
[46]  Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 166: 1912–1920.
[47]  Janossy G, Pinching AJ, Bofill M, Weber J, McLaughlin JE, et al. (1985) An immunohistological approach to persistent lymphadenopathy and its relevance to AIDS. Clin Exp Immunol 59: 257–266.
[48]  Lage RS, Oliveira GC, Busek SU, Guerra LL, Giunchetti RC, et al. (2007) Analysis of the cytokine profile in spleen cells from dogs naturally infected by Leishmania chagasi. Vet Immunol Immunopathol 115: 135–145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133