全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Genomic Characterization of the Taylorella Genus

DOI: 10.1371/journal.pone.0029953

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus.

References

[1]  Sugimoto C, Isayama Y, Sakazaki R, Kuramochi S (1983) Transfer of Haemophilus equigenitalis Taylor et al. 1978 to the genus Taylorella gen. nov. as Taylorella equigenitalis comb. nov. Curr Microbiol 9: 155–162.
[2]  Crowhurst RC (1977) Genital infection in mares. Vet Rec 100: 476.
[3]  Timoney PJ, Ward J, Kelly P (1977) A contagious genital infection of mares. Vet Rec 101: 103.
[4]  Timoney PJ (2011) Contagious equine metritis: An insidious threat to the U.S. horse breeding industry. J Anim Sci. pp. jas.2010–3368.
[5]  Matsuda M, Moore JE (2003) Recent advances in molecular epidemiology and detection of Taylorella equigenitalis associated with contagious equine metritis (CEM). Vet Microbiol 97: 111–122.
[6]  Lindmark DG, Jarroll EL, Timoney PJ, Shin SJ (1982) Energy metabolism of the contagious equine metritis bacterium. Infect Immun 36: 531–534.
[7]  Hitchcock PJ, Brown TM, Corwin D, Hayes SF, Olszewski A, et al. (1985) Morphology of three strains of contagious equine metritis organism. Infect Immun 48: 94–108.
[8]  Kanemaru T, Kamada M, Wada R, Anzai T, Kumanomido T, et al. (1992) Electron microscopic observation of Taylorella equigenitalis with pili in vivo. J Vet Med Sci 54: 345–347.
[9]  Bertram TA, Coignoul FL, Jensen AE (1982) Phagocytosis and intracellular killing of the contagious equine metritis organism by equine neutrophils in serum. Infect Immun 37: 1241–1247.
[10]  Bleumink-Pluym N, ter Laak E, Houwers D, van der Zeijst B (1996) Differences between Taylorella equigenitalis strains in their invasion of and replication in cultured cells. Clin Diagn Lab Immunol 3: 47–50.
[11]  Katz JB, Evans LE, Hutto DL, Schroeder-Tucker LC, Carew AM, et al. (2000) Clinical, bacteriologic, serologic, and pathologic features of infections with atypical Taylorella equigenitalis in mares. J Am Vet Med Assoc 216: 1945–1948.
[12]  Jang S, Donahue J, Arata A, Goris J, Hansen L, et al. (2001) Taylorella asinigenitalis sp. nov., a bacterium isolated from the genital tract of male donkeys (Equus asinus). Int J Syst Evol Microbiol 51: 971–976.
[13]  Breuil MF, Duquesne F, Laugier C, Petry S (2011) Phenotypic and 16S ribosomal RNA gene diversity of Taylorella asinigenitalis strains isolated between 1995 and 2008. Vet Microbiol 148: 260–266.
[14]  Hébert L, Moumen B, Duquesne F, Breuil M-F, Laugier C, et al. (2011) Genome sequence of Taylorella equigenitalis MCE9, the causative agent of contagious equine metritis. J Bacteriol 193: 1785.
[15]  Pons N, Batto JM, Ehrlich SD, Renault P (2008) Development of software facilities to characterize regulatory binding motifs and application to Streptococcaceae. J Mol Microb Biotech 14: 67–73.
[16]  Willems A, Gilhaus H, Beer W, Mietke H, Gelderblom HR, et al. (2002) Brackiella oedipodis gen. nov., sp. nov., gram-negative, oxidase-positive rods that cause endocarditis of cotton-topped tamarin (Saguinus oedipus). Int J Syst Evol Microbiol 52: 179–186.
[17]  Temple LM, Miyamoto DM, Mehta M, Capitini CM, Von Stetina S, et al. (2010) Identification and characterization of two Bordetella avium gene products required for hemagglutination. Infect Immun 78: 2370–2376.
[18]  Bunikis I, Denker K, ?–stberg Y, Andersen C, Benz R, et al. (2008) An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 4: e1000009.
[19]  Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9: 207–217.
[20]  Sisto A, Cipriani M, Morea M, Lonigro S, Valerio F, et al. (2010) An Rhs-like genetic element is involved in bacteriocin production by Pseudomonas savastanoi pv. savastanoi. Antonie van Leeuwenhoek 98: 505–517.
[21]  Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Micro 8: 317–327.
[22]  Jansen R, Embden JDAv, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43: 1565–1575.
[23]  Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29: 3742–3756.
[24]  Vinogradov E, MacLean LL, Brooks BW, Lutze-Wallace C, Perry MB (2008) Structure of the O-polysaccharide of the lipopolysaccharide produced by Taylorella asinigenitalis type strain (ATCC 700933). Biochem Cell Biol 86: 278–284.
[25]  Vinogradov E, MacLean LL, Brooks BW, Lutze-Wallace C, Perry MB (2008) The structure of the polysaccharide of the lipopolysaccharide produced by Taylorella equigenitalis type strain (ATCC 35865). Carbohyd Res 343: 3079–3084.
[26]  Brooks BW, Lutze-Wallace CL, Maclean LL, Vinogradov E, Perry MB (2010) Identification and differentiation of Taylorella equigenitalis and Taylorella asinigenitalis by lipopolysaccharide O-antigen serology using monoclonal antibodies. Can J Vet Res 74: 18–24.
[27]  Alm RA, Ling L-SL, Moir DT, King BL, Brown ED, et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176–180.
[28]  Chinen A, Uchiyama I, Kobayashi I (2000) Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction-modification genes with large genome polymorphisms. Gene 259: 109–121.
[29]  McGlynn P, Lloyd RG (2002) Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18: 413–419.
[30]  Tiyawisutsri R, Holden M, Tumapa S, Rengpipat S, Clarke S, et al. (2007) Burkholderia Hep_Hag autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis. BMC Microbiol 7: 19.
[31]  Arioli S, Roncada P, Salzano AM, Deriu F, Corona S, et al. (2009) The relevance of carbon dioxide metabolism in Streptococcus thermophilus. Microbiology 155: 1953–1965.
[32]  Lolkema JS, Poolman B, Konings WN (1998) Bacterial solute uptake and efflux systems. Curr Opin Microbiol 1: 248–253.
[33]  Antoine R, Huvent I, Chemlal K, Deray I, Raze D, et al. (2005) The periplasmic binding protein of a tripartite tricarboxylate transporter is involved in signal transduction. J Mol Biol 351: 799–809.
[34]  Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72: 317–364.
[35]  Mulligan C, Fischer M, Thomas GH (2010) Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiology Reviews 35: 68–86.
[36]  Winnen B, Hvorup RN, Saier MH (2003) The tripartite tricarboxylate transporter (TTT) family. Res Microbiol 154: 457–465.
[37]  Bo?l G, Mijakovic I, Mazé A, Poncet S, Taha MK, et al. (2003) Transcription regulators potentially controlled by HPr kinase/phosphorylase in Gram-negative bacteria. J Mol Microb Biotech 5: 206–215.
[38]  Jin RZ, Lin ECC (1984) An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coli. J Gen Microbiol 130: 83–88.
[39]  Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70: 939–1031.
[40]  Pitcher RS, Watmough NJ (2004) The bacterial cytochrome cbb3 oxidases. Biochem Biophys Acta 1655: 388–399.
[41]  Sasindran SJ, Saikolappan S, Dhandayuthapani S (2007) Methionine sulfoxide reductases and virulence of bacterial pathogens. Future Microbiol 2: 619–630.
[42]  Jehl M-A, Arnold R, Rattei T (2011) Effective-a database of predicted secreted bacterial proteins. Nucleic Acids Res 39: D591–D595.
[43]  Tseng T-T, Tyler B, Setubal J (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9: S2.
[44]  Preston GM, Haubold B, Rainey PB (1998) Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr Opin Microbiol 1: 589–597.
[45]  Sandkvist M (2001) Biology of type II secretion. Mol Microbiol 40: 271–283.
[46]  Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, Geme Joseph W St Iii, et al. (2000) Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect 2: 1061–1072.
[47]  Tomich M, Planet PJ, Figurski DH (2007) The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5: 363–375.
[48]  Motherway MOC, Zomer A, Leahy SC, Reunanen J, Bottacini F, et al. (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci USA.
[49]  Rêgo AT, Chandran V, Waksman G (2010) Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J 425: 475–488.
[50]  Wallden K, Rivera-Calzada A, Waksman G (2010) Microreview: Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12: 1203–1212.
[51]  Tegtmeyer N, Wessler S, Backert S (2011) Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J 278: 1190–1202.
[52]  Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 1528–1533.
[53]  B?nemann G, Pietrosiuk A, Mogk A (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol 76: 815–821.
[54]  Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8: 2–6.
[55]  Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12: 11–17.
[56]  van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, et al. (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103: 9274–9279.
[57]  Linke D, Goldman A, Heilmann C (2011) Adhesion Mechanisms of Staphylococci. Bacterial Adhesion: Springer Netherlands. pp. 105–123.
[58]  Yang J, Chen L, Sun L, Yu J, Jin Q (2008) VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 36: D539–D542.
[59]  Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320: 1651–1654.
[60]  Penz T, Horn M, Schmitz-Esser S (2010) The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” encodes an afp-like prophage possibly used for protein secretion. Virulence 1: 541–545.
[61]  Al-Khodor S, Price CT, Kalia A, Abu Kwaik Y (2009) Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 18: 132–139.
[62]  Bella J, Hindle K, McEwan P, Lovell S (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65: 2307–2333.
[63]  Beddek A, Schryvers A (2010) The lactoferrin receptor complex in gram negative bacteria. BioMetals 23: 377–386.
[64]  Garduno RA, Chong A, Nasrallah GK, Allan DS (2011) The Legionella pneumophila chaperonin - an unusual multifunctional protein in unusual locations. Front Microbiol 2:
[65]  Joseph B, Goebel W (2007) Life of Listeria monocytogenes in the host cells' cytosol. Microbes Infect 9: 1188–1195.
[66]  Eisen J, Heidelberg J, White O, Salzberg S (2000) Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1:. research0011.0011 - research0011.0019.
[67]  Li Y, Zheng H, Liu Y, Jiang Y, Xin J, et al. (2011) The complete genome sequence of Mycoplasma bovis strain Hubei-1. PLoS ONE 6: e20999.
[68]  Maruyama F, Kobata M, Kurokawa K, Nishida K, Sakurai A, et al. (2009) Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics 10: 358.
[69]  Archer C, Kim J, Jeong H, Park J, Vickers C, et al. (2011) The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12: 9.
[70]  Duquesne F, Pronost S, Laugier C, Petry S (2007) Identification of Taylorella equigenitalis responsible for contagious equine metritis in equine genital swabs by direct polymerase chain reaction. Res Vet Sci 82: 47–49.
[71]  Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.
[72]  Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.
[73]  Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. In: Giegerich R, et al., editor. pp. 45–56. (ed), Proceedings of the German Conference on Bioinformatics GBF-Braunschweig and University of Bielefeld, Bielefeld, Germany.
[74]  Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202.
[75]  Kanehisa M (1997) A database for post-genome analysis. Trends Genet 13: 375–376.
[76]  Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9: 75.
[77]  Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.
[78]  Lagesen K, Hallin P, R?dland EA, St?rfeldt H-H, Rognes T, et al. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: 3100–3108.
[79]  Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35: W52–W57.
[80]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
[81]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol.
[82]  Abbott JC, Aanensen DM, Rutherford K, Butcher S, Spratt BG (2005) WebACT–an online companion for the Artemis Comparison Tool. Bioinformatics 21: 3665–3666.
[83]  Carver TJ, Rutherford KM, Berriman M, Rajandream M, Barrell BG, et al. (2005) ACT: the Artemis comparison tool. Bioinformatics 21: 3422–3423.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133