[1] | Elias JA (2000) Airway remodeling in asthma. Unanswered questions. Am J Respir Crit Care Med 161: S168–171.
|
[2] | James A (2005) Airway remodeling in asthma. Curr Opin Pulm Med 11: 1–6.
|
[3] | Hansel NN, Diette GB (2007) Gene expression profiling in human asthma. Proc Am Thorac Soc 4: 32–36.
|
[4] | Homer RJ, Elias JA (2005) Airway remodeling in asthma: therapeutic implications of mechanisms. Physiology (Bethesda) 20: 28–35.
|
[5] | Jeffery PK (1998) Investigation and assessment of airway and lung inflammation: we now have the tools, what are the questions? Eur Respir J 11: 524–528.
|
[6] | Karol MH (1994) Animal models of occupational asthma. Eur Respir J 7: 555–568.
|
[7] | McLaughlin RF (1983) Bronchial artery distribution in various mammals and in humans. Am Rev Respir Dis 128: S57–S58.
|
[8] | Magno M (1990) Comparative anatomy of the tracheobronchial circulation. Eur Respir J Suppl 12: 557s–562s; discussion 562s–563s.
|
[9] | van Erck E, Votion DM, Kirschvink N, Art T, Lekeux P (2003) Use of the impulse oscillometry system for testing pulmonary function during methacholine bronchoprovocation in horses. Am J Vet Res 64: 1414–1420.
|
[10] | Lowell F (1964) Observations on heaves: an asthma-like syndrome in the horse. J Allergy 35: 322–330.
|
[11] | Snapper JR (1986) Large animal models of asthma. Am Rev Respir Dis 133: 351–352.
|
[12] | Robinson NE (2001) International Workshop on Equine Chronic Airway Disease. Michigan State University 16–18 June 2000. Equine Vet J 33: 5–19.
|
[13] | Range F, Mundhenk L, Gruber AD (2007) A soluble secreted glycoprotein (eCLCA1) is overexpressed due to goblet cell hyperplasia and metaplasia in horses with recurrent airway obstruction. Vet Pathol 44: 901–911.
|
[14] | Herszberg B, Ramos-Barbon D, Tamaoka M, Martin JG, Lavoie JP (2006) Heaves, an asthma-like equine disease, involves airway smooth muscle remodeling. J Allergy Clin Immunol 118: 382–388.
|
[15] | Leclere M, Lavoie-Lamoureux A, Gelinas-Lymburner E, David F, Martin JG, et al. (2010) Effect of Antigen Exposure on Airway Smooth Muscle Remodeling in an Equine Model of Chronic Asthma. Am J Respir Cell Mol Biol.
|
[16] | Cao W, Epstein C, Liu H, DeLoughery C, Ge N, et al. (2004) Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study. BMC Genomics 5: 26.
|
[17] | Qin M, Zeng Z, Zheng J, Shah PK, Schwartz SM, et al. (2003) Suppression subtractive hybridization identifies distinctive expression markers for coronary and internal mammary arteries. Arterioscler Thromb Vasc Biol 23: 425–433.
|
[18] | McClintock TS (2002) High-throughput expression profiling techniques. Chem Senses 27: 289–291.
|
[19] | Relave F, David F, Leclere M, Alexander K, Bussieres G, et al. (2008) Evaluation of a thoracoscopic technique using ligating loops to obtain large lung biopsies in standing healthy and heaves-affected horses. Vet Surg 37: 232–240.
|
[20] | Bedard J, Brule S, Price CA, Silversides DW, Lussier JG (2003) Serine protease inhibitor-E2 (SERPINE2) is differentially expressed in granulosa cells of dominant follicle in cattle. Mol Reprod Dev 64: 152–165.
|
[21] | Fayad T, Levesque V, Sirois J, Silversides DW, Lussier JG (2004) Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization. Biol Reprod 70: 523–533.
|
[22] | Ekberg-Jansson A, Andersson B, Bake B, Boijsen M, Enanden I, et al. (2001) Neutrophil-associated activation markers in healthy smokers relates to a fall in DL(CO) and to emphysematous changes on high resolution CT. Respir Med 95: 363–373.
|
[23] | Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 5245–5250.
|
[24] | Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
|
[25] | Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.
|
[26] | Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29: 23–39.
|
[27] | Anderson GP (2008) Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372: 1107–1119.
|
[28] | James AL, Pare PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139: 242–246.
|
[29] | Bai TR (2010) Evidence for airway remodeling in chronic asthma. Curr Opin Allergy Clin Immunol 10: 82–86.
|
[30] | Hirota JA, Nguyen TT, Schaafsma D, Sharma P, Tran T (2009) Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther 22: 370–378.
|
[31] | Mao J, Yuan H, Xie W, Wu D (1998) Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein alpha subunit Galpha13. Proc Natl Acad Sci U S A 95: 12973–12976.
|
[32] | Lee SM, Vasishtha M, Prywes R (2010) Activation and repression of cellular immediate early genes by serum response factor cofactors. J Biol Chem 285: 22036–22049.
|
[33] | Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, et al. (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428: 185–189.
|
[34] | Yoshii A, Iizuka K, Dobashi K, Horie T, Harada T, et al. (1999) Relaxation of contracted rabbit tracheal and human bronchial smooth muscle by Y-27632 through inhibition of Ca2+ sensitization. Am J Respir Cell Mol Biol 20: 1190–1200.
|
[35] | Kay AB, Ying S, Varney V, Gaga M, Durham SR, et al. (1991) Messenger mRNA expression of the cytokine gene cluster, interleukin 3 (IL-3), IL-4, IL-5 and granulocyte/macrophage colony-stimulating factor, in allergen-induced late-phase cutaneous response in atopic subjects. J Exp Med 173: 775–778.
|
[36] | Schaafsma D, Gosens R, Zaagsma J, Halayko AJ, Meurs H (2008) Rho kinase inhibitors: a novel therapeutical intervention in asthma? Eur J Pharmacol 585: 398–406.
|
[37] | Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks AD (1998) The Elk-1 ETS-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol 18: 710–720.
|
[38] | Ohkawa Y, Hayashi K, Sobue K (2003) Calcineurin-mediated pathway involved in the differentiated phenotype of smooth muscle cells. Biochem Biophys Res Commun 301: 78–83.
|
[39] | Kakita T, Hasegawa K, Iwai-Kanai E, Adachi S, Morimoto T, et al. (2001) Calcineurin pathway is required for endothelin-1-mediated protection against oxidant stress-induced apoptosis in cardiac myocytes. Circ Res 88: 1239–1246.
|
[40] | Xin X, Hou YT, Li L, Schmiedlin-Ren P, Christman GM, et al. (2004) IGF-I increases IGFBP-5 and collagen alpha1(I) mRNAs by the MAPK pathway in rat intestinal smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 286: G777–783.
|
[41] | Veraldi KL, Gibson BT, Yasuoka H, Myerburg MM, Kelly EA, et al. (2009) Role of Insulin-like Growth Factor Binding Protein-3 in Allergic Airway Remodeling. Am J Respir Crit Care Med.
|
[42] | McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, et al. (2007) Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292: L278–286.
|
[43] | Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem 276: 2313–2316.
|
[44] | Wu H, Peisley A, Graef IA, Crabtree GR (2007) NFAT signaling and the invention of vertebrates. Trends Cell Biol 17: 251–260.
|
[45] | Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15: 707–747.
|
[46] | Nozaki K, Tomizawa K, Yokoyama T, Kumon H, Matsui H (2003) Calcineurin mediates bladder smooth muscle hypertrophy after bladder outlet obstruction. J Urol 170: 2077–2081.
|
[47] | Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62: 365–383.
|
[48] | Clement M, Delaney D, Austin J, Sliwoski J, Hii G, et al. (2006) Activation of the Calcineurin Pathway is Associated With Detrusor Decompensation: A Potential Therapeutic Target. The Journal of Urology 176: 1225–1229.
|
[49] | Leguillette R, Laviolette M, Bergeron C, Zitouni N, Kogut P, et al. (2009) Myosin, transgelin, and myosin light chain kinase: expression and function in asthma. Am J Respir Crit Care Med 179: 194–204.
|
[50] | Trakada G, Tsourapis S, Marangos M, Spiropoulos K (2000) Arterial and bronchoalveolar lavage fluid endothelin-1 concentration in asthma. Respir Med 94: 992–996.
|
[51] | Zhu G, Carlsen K, Carlsen KH, Lenney W, Silverman M, et al. (2008) Polymorphisms in the endothelin-1 (EDN1) are associated with asthma in two populations. Genes Immun 9: 23–29.
|
[52] | Costa LR, Eades SC, Venugopal CS, Moore RM (2009) Plasma and pulmonary fluid endothelin in horses with seasonal recurrent airway obstruction. J Vet Intern Med 23: 1239–1246.
|
[53] | Bao Y, Li R, Jiang J, Cai B, Gao J, et al. (2008) Activation of peroxisome proliferator-activated receptor gamma inhibits endothelin-1-induced cardiac hypertrophy via the calcineurin/NFAT signaling pathway. Mol Cell Biochem 317: 189–196.
|
[54] | Dai Z, Wu F, Yeung EW, Li Y (2010) IGF-IEc expression, regulation and biological function in different tissues. Growth Horm IGF Res 20: 275–281.
|
[55] | Kawaguchi M, Fujita J, Kokubu F, Ohara G, Huang SK, et al. (2010) Induction of insulin-like growth factor-I by interleukin-17F in bronchial epithelial cells. Clin Exp Allergy 40: 1036–1043.
|
[56] | Chetty A, Cao GJ, Nielsen HC (2006) Insulin-like Growth Factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr Res 60: 389–394.
|
[57] | Hayashi K, Takahashi M, Kimura K, Nishida W, Saga H, et al. (1999) Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt) and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells. J Cell Biol 145: 727–740.
|
[58] | Ohkawa Y, Hayashi Ki, Sobue K (2003) Calcineurin-mediated pathway involved in the differentiated phenotype of smooth muscle cells. Biochemical and Biophysical Research Communications 301: 78–83.
|
[59] | Yamashita N, Tashimo H, Ishida H, Matsuo Y, Arai H, et al. (2005) Role of insulin-like growth factor-I in allergen-induced airway inflammation and remodeling. Cell Immunol 235: 85–91.
|
[60] | Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167: 1360–1368.
|
[61] | Dutsch-Wicherek M (2010) RCAS1, MT, and vimentin as potential markers of tumor microenvironment remodeling. Am J Reprod Immunol 63: 181–188.
|
[62] | Pettipher R, Hansel TT, Armer R (2007) Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nature Reviews Drug Discovery 6: 313–325.
|
[63] | Winkler GS, Mulder KW, Bardwell VJ, Kalkhoven E, Timmers HT (2006) Human Ccr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. EMBO J 25: 3089–3099.
|
[64] | Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, et al. (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160: 1001–1008.
|
[65] | Watanabe S, Yamasaki A, Hashimoto K, Shigeoka Y, Chikumi H, et al. (2009) Expression of functional leukotriene B4 receptors on human airway smooth muscle cells. J Allergy Clin Immunol 124: 59–65.e51–53
|
[66] | Luster AD, Tager AM (2004) T-cell trafficking in asthma: lipid mediators grease the way. Nature Reviews Immunology 4: 711–724.
|
[67] | Montuschi P, Barnes PJ (2002) Exhaled leukotrienes and prostaglandins in asthma. J Allergy Clin Immunol 109: 615–620.
|
[68] | Rao NL, Riley JP, Banie H, Xue X, Sun B, et al. (2010) Leukotriene A(4) hydrolase inhibition attenuates allergic airway inflammation and hyperresponsiveness. Am J Respir Crit Care Med 181: 899–907.
|
[69] | Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A, et al. (2010) A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330: 90–94.
|
[70] | Ulven T, Kostenis E (2010) Novel CRTH2 antagonists: a review of patents from 2006 to 2009. Expert Opin Ther Pat 20: 1505–1530.
|