Chromatin Immuno Precipitation (ChIP) profiling detects in vivo protein-DNA binding, and has revealed a large combinatorial complexity in the binding of chromatin associated proteins and their post-translational modifications. To fully explore the spatial and combinatorial patterns in ChIP-profiling data and detect potentially meaningful patterns, the areas of enrichment must be aligned and clustered, which is an algorithmically and computationally challenging task. We have developed CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. CATCHprofiles is built upon a computationally efficient implementation for the exhaustive alignment and hierarchical clustering of ChIP profiling data. The tool features a graphical interface for examination and browsing of the clustering results. CATCHprofiles requires no prior knowledge about functional sites, detects known binding patterns “ab initio”, and enables the detection of new patterns from ChIP data at a high resolution, exemplified by the detection of asymmetric histone and histone modification patterns around H2A.Z-enriched sites. CATCHprofiles' capability for exhaustive analysis combined with its ease-of-use makes it an invaluable tool for explorative research based on ChIP profiling data. CATCHprofiles and the CATCH algorithm run on all platforms and is available for free through the CATCH website: http://catch.cmbi.ru.nl/. User support is available by subscribing to the mailing list catch-users@bioinformatics.org.
Welboren W-J, van Driel MA, Janssen-Megens EM, van Heeringen SJ, Sweep FC, et al. (2009) ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. The EMBO journal 28: 1418–28. doi:10.1038/emboj.2009.88.
[3]
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, et al. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–13. doi:10.1016/j.cell.2006.02.043.
[4]
Hatzis P, van der Flier LG, van Driel MA, Guryev V, Nielsen F, et al. (2008) Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Molecular and cellular biology 28: 2732–44. doi:10.1128/MCB.02175-07.
[5]
Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, et al. (2008) Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes & development 22: 2953–67. doi:10.1101/gad.501108.
[6]
Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823–37. doi:10.1016/j.cell.2007.05.009.
[7]
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–60. doi:10.1038/nature06008.
[8]
Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77–88. doi:10.1016/j.cell.2007.05.042.
[9]
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, et al. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315–26. doi:10.1016/j.cell.2006.02.041.
[10]
Reid G, Gallais R, Métivier R (2009) Marking time: the dynamic role of chromatin and covalent modification in transcription. The international journal of biochemistry & cell biology 41: 155–63. doi:10.1016/j.biocel.2008.08.028.
[11]
Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature genetics 39: 311–8. doi:10.1038/ng1966.
[12]
Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447: 407–12. doi:10.1038/nature05915.
[13]
Barrera LO, Ren B (2006) The transcriptional regulatory code of eukaryotic cells – insights from genome-wide analysis of chromatin organization and transcription factor binding. Current Opinion in Cell Biology 18: 7. doi:doi:10.1016/j.ceb.2006.04.002.
[14]
Fischer JJ, Toedling J, Krueger T, Schueler M, Huber W, et al. (2008) Combinatorial effects of four histone modifications in transcription and differentiation. Genomics 91: 41–51. doi:10.1016/j.ygeno.2007.08.010.
[15]
Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, et al. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nature genetics 40: 897–903. doi:10.1038/ng.154.
[16]
Hon G, Ren B, Wang W (2008) ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS computational biology 4: e1000201. doi:10.1371/journal.pcbi.1000201.
[17]
Bishop CM (2007) Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. 738 p.
Sneath PHA, Sokal RR (1973) Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H.Freeman & Co Ltd.
[20]
Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome biology 7: Suppl 1S12.1–14. doi:10.1186/gb-2006-7-s1-s12.
[21]
Tolstorukov MY, Kharchenko PV, Goldman JA, Kingston RE, Park PJ (2009) Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. Genome research 19: 967–77. doi:10.1101/gr.084830.108.
[22]
Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137: 1194–211. doi:10.1016/j.cell.2009.06.001.
[23]
Renda M, Baglivo I, Burgess-Beusse B, Esposito S, Fattorusso R, et al. (2007) Critical DNA binding interactions of the insulator protein CTCF: a small number of zinc fingers mediate strong binding, and a single finger-DNA interaction controls binding at imprinted loci. The Journal of biological chemistry 282: 33336–45. doi:10.1074/jbc.M706213200.
[24]
Fu Y, Sinha M, Peterson CL, Weng Z (2008) The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS genetics 4: e1000138. doi:10.1371/journal.pgen.1000138.
[25]
Jin C, Zang C, Wei G, Cui K, Peng W, et al. (2009) H3.3/H2A.Z double variant-containing nucleosomes mark “nucleosome-free regions” of active promoters and other regulatory regions. Nature genetics 41: 941–5. doi:10.1038/ng.409.
[26]
van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nature biotechnology 18: 424–8. doi:10.1038/74487.
[27]
Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2: 559–572.
[28]
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23: 2947–8. doi:10.1093/bioinformatics/btm404.