全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Maximum Genus, Degree of Vertex and Girth
最大亏格、点度和围长

Keywords: Graph,Betti deficiency number,upper embeddability,cycle
,Betti亏数,上可嵌入性,

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let G be a graph. Denote by g(G) the girth of G, and by \delta(G) the minimum degree of G. The following two results are proved:1) Let G be a k-edge-connected simple graph, for any cycle C, there exist a vetex x\in C satisfying the condition:d_G(x)>\frac{|V(G)|}{(k-1)^2+2}+k-g(G)+2, k=1,2,3, then G is upper embeddable, and the lower bound is best possible.2) Let G be a k-edge- connected simple graph, then \xi(G)\le \max\{1,m\}, k=1, \max\{1,\frac{1}{k-1}m-1\},k=2,3, where m=\frac{|V(G)|g(G)-6}{g(G)^{2}+(\delta(G)-2)g(G)-4}.Moreover, the upper bound is best possible, and a better lower bound of the maximum genus is given.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133