全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Weakly Pancyclic Theorem for Hamiltonian Non-Bipartite Graphs
Hamilton非二部图的弱泛圈性

Keywords: Non-bipartite graph,Hamiltonian graph cycle,weakly pancyclic graph
非二部图
,Hamilton图,,弱泛圈图

Full-Text   Cite this paper   Add to My Lib

Abstract:

An n-vertex graph is called weakly pancyclic if it contains cycles of all lengths between its girth and circumference. In 1977, Brandt conjectured that an n-vertex non-bipartite graph with more than \lfloor {{\textstyle{{n^2 } \over 4}}}\rfloor- n + 5 edges is weakly pancyclic. Bollobas and Thomason(1999) proved that every non-bipartite graph of order n and size at least \lfloor{{{\textstyle{{n^2 } \over 4}}}\rfloor - n + 59 is weakly pancyclic. In this paper, the following result is established: let G be a Hamiltonian non-bipartite graph of order $n$ and size at least \lfloor {{\textstyle{{n^2 } \over 4}}}\rfloor - n + 12, then G is weakly pancyclic.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133