全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Viscosity Approximation for Nonexpansive Nonself-Mappings InReflexive Banach Spaces
自反Banach空间中非扩张非自映射的粘滞迭代逼近方法

Keywords: Nonexpansive nonself-mappings,viscosity approximation,strictly convex Banach space
非扩张非自映射
,粘滞迭代方法,严格凸的Banach空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $E$ be a reflexive and strictly convex Banach space with a uniformly G\^ateaux differentiable norm, and $K$ be a nonempty closed convex subset of $E$ which is also a sunny nonexpansive retract of $E$. Assume that $T:K\to E$ is a nonexpansive mapping with $F(T)\neq\emptyset$, and $f:K\to K$ is a fixed contractive mapping. The implicit iterative sequence $\{x_t\}$ is defined by $x_t=P(tf(x_t)+(1-t)Tx_t)$ for $t\in (0,1).$ The explicit iterative sequence$\{x_n\}$ is given by $x_{n+1}=P(\alpha_nf(x_n)+(1-\alpha_n)Tx_n)$, where $\alpha_n\in(0,1)$ satisfies appropriate conditions and $P$ is nonexpansive retraction of $E$ onto $K$. It is shown that $\{x_t\}$ and $\{x_n\}$ strongly converges to a fixed point of $T$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133