[1] | Falkow S (1996) The evolution of pathogenicity in Escherichia, Shigella, and Salmonella. In: Neidhardt FC, editor. Escherichia coli and Salmonella. Cellular and Molecular Biology. Washington: ASM Press. pp. 2723–2729.
|
[2] | Ellermeier CD, Slauch JM (2006) The genus Salmonella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The prokaryotes. New York, USA: Springer Science. pp. 123–158.
|
[3] | Carter PB, Collins FM (1974) The route of enteric infection in normal mice. J Exp Med 139(5): 1189–1203.
|
[4] | Jones BD, Ghori N, Falkow S (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the peyer's patches. J Exp Med 180(1): 15–23.
|
[5] | Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82(5): 346–353.
|
[6] | Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, et al. (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50(6): 882–889.
|
[7] | Ochman H, Wilson AC (1987) Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J Mol Evol 26(1–2): 74–86.
|
[8] | Groisman EA, Ochman H (1997) How Salmonella became a pathogen. Trends Microbiol 5(9): 343–349.
|
[9] | Kelly BG, Vespermann A, Bolton DJ (2009) The role of horizontal gene transfer in the evolution of selected foodborne bacterial pathogens. Food Chem Toxicol 47(5): 951–968.
|
[10] | Hensel M (2004) Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294(2–3): 95–102.
|
[11] | Porwollik S, McClelland M (2003) Lateral gene transfer in Salmonella. Microbes Infect 5(11): 977–989.
|
[12] | Groisman EA, Ochman H (1996) Pathogenicity islands: Bacterial evolution in quantum leaps. Cell 87(5): 791–794.
|
[13] | Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17(1): 14–56.
|
[14] | Lostroh CP, Lee CA (2001) The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect 3(14–15): 1281–1291.
|
[15] | Darwin KH, Miller VL (1999) Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12(3): 405–428.
|
[16] | Ohl ME, Miller SI (2001) Salmonella: A model for bacterial pathogenesis. Annu Rev Med 52: 259–274.
|
[17] | Altier C (2005) Genetic and environmental control of Salmonella invasion. J Microbiol 43 Spec No: 85–92.
|
[18] | Ellermeier JR, Slauch JM (2007) Adaptation to the host environment: Regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10(1): 24–29.
|
[19] | Jones BD (2005) Salmonella invasion gene regulation: A story of environmental awareness. J Microbiol 43 Spec No: 110–117.
|
[20] | Baek CH, Wang S, Roland KL, Curtiss R 3rd (2009) Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol 191(4): 1278–1292.
|
[21] | Olekhnovich IN, Kadner RJ (2006) Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J Mol Biol 357(2): 373–386.
|
[22] | Queiroz MH, Madrid C, Paytubi S, Balsalobre C, Juarez A (2011) Integration host factor alleviates H-NS silencing of the Salmonella enterica serovar Typhimurium master regulator of SPI1, hilA. Microbiology 157(9): 2504–2514.
|
[23] | Takaya A, Kubota Y, Isogai E, Yamamoto T (2005) Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol Microbiol 55(3): 839–852.
|
[24] | Boddicker JD, Jones BD (2004) Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect Immun 72(4): 2002–2013.
|
[25] | Fahlen TF, Mathur N, Jones BD (2000) Identification and characterization of mutants with increased expression of hilA, the invasion gene transcriptional activator of Salmonella typhimurium. FEMS Immunol Med Microbiol 28(1): 25–35.
|
[26] | Baxter MA, Fahlen TF, Wilson RL, Jones BD (2003) HilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. Infect Immun 71(3): 1295–1305.
|
[27] | Baxter MA, Jones BD (2005) The fimYZ genes regulate Salmonella enterica serovar Typhimurium invasion in addition to type 1 fimbrial expression and bacterial motility. Infect Immun 73(3): 1377–1385.
|
[28] | Lim S, Yun J, Yoon H, Park C, Kim B, et al. (2007) Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res 35(6): 1822–1832.
|
[29] | Altier C, Suyemoto M, Lawhon SD (2000) Regulation of Salmonella enterica serovar Typhimurium invasion genes by CsrA. Infect Immun 68(12): 6790–6797.
|
[30] | Martinez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, et al. (2011) Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 80(6): 1637–1656.
|
[31] | Fortune DR, Suyemoto M, Altier C (2006) Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun 74(1): 331–339.
|
[32] | Ellermeier JR, Slauch JM (2008) Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 190(2): 476–486.
|
[33] | Teixido L, Carrasco B, Alonso JC, Barbe J, Campoy S (2011) Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLoS One 6(5): e19711.
|
[34] | Troxell B, Sikes ML, Fink RC, Vazquez-Torres A, Jones-Carson J, et al. (2011) Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 193(2): 497–505.
|
[35] | Ellermeier CD, Ellermeier JR, Slauch JM (2005) HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 57(3): 691–705.
|
[36] | Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, et al. (2008) Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22(17): 2434–2446.
|
[37] | Chubiz JE, Golubeva YA, Lin D, Miller LD, Slauch JM (2010) FliZ regulates expression of the Salmonella pathogenicity island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar Typhimurium. J Bacteriol 192(23): 6261–6270.
|
[38] | Balbontin R, Rowley G, Pucciarelli MG, Lopez-Garrido J, Wormstone Y, et al. (2006) DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol 188(23): 8160–8168.
|
[39] | Lopez-Garrido J, Casadesus J (2010) Regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by DNA adenine methylation. Genetics 184(3): 637–649.
|
[40] | Garcia-Del Portillo F, Pucciarelli MG, Casadesus J (1999) DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc Natl Acad Sci U S A 96(20): 11578–11583.
|
[41] | Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N, et al. (2001) Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69(5): 2894–2901.
|
[42] | Thanassi DG, Saulino ET, Hultgren SJ (1998) The chaperone/usher pathway: A major terminal branch of the general secretory pathway. Curr Opin Microbiol 1(2): 223–231.
|
[43] | Humphries A, Deridder S, Baumler AJ (2005) Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect Immun 73(9): 5329–5338.
|
[44] | Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, et al. (2003) The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 48(5): 1357–1376.
|
[45] | Chaudhuri RR, Loman NJ, Snyder LA, Bailey CM, Stekel DJ, et al. (2008) xBASE2: A comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36(Database issue): D543–6.
|
[46] | Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ (1999) An essential role for DNA adenine methylation in bacterial virulence. Science 284(5416): 967–970.
|
[47] | Jakomin M, Chessa D, Baumler AJ, Casadesus J (2008) Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J Bacteriol 190(22): 7406–7413.
|
[48] | Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, et al. (2005) The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73(6): 3358–3366.
|
[49] | Chessa D, Winter MG, Jakomin M, Baumler AJ (2009) Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol Microbiol 71(4): 864–875.
|
[50] | Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12): 6640–6645.
|
[51] | Ellermeier CD, Janakiraman A, Slauch JM (2002) Construction of targeted single copy lac fusions using lambda red and FLP-mediated site-specific recombination in bacteria. Gene 290(1–2): 153–161.
|
[52] | Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 98(26): 15264–15269.
|
[53] | Schmieger H (1972) Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119(1): 75–88.
|
[54] | Garzon A, Cano DA, Casadesus J (1995) Role of Erf recombinase in P22-mediated plasmid transduction. Genetics 140(2): 427–434.
|
[55] | Chan RK, Botstein D, Watanabe T, Ogata Y (1972) Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. properties of a high-frequency-transducing lysate. Virology 50(3): 883–898.
|
[56] | Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res 25(6): 1203–1210.
|
[57] | Urban JH, Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35(3): 1018–1037.
|
[58] | Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
|
[59] | Segura I, Casadesus J, Ramos-Morales F (2004) Use of mixed infections to study cell invasion and intracellular proliferation of Salmonella enterica in eukaryotic cell cultures. J Microbiol Methods 56(1): 83–91.
|
[60] | Taylor RK, Miller VL, Furlong DB, Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84(9): 2833–2837.
|
[61] | Freter R, Allweiss B, O'Brien PC, Halstead SA, Macsai MS (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: In vitro studies. Infect Immun 34(1): 241–249.
|
[62] | Bustamante VH, Martinez LC, Santana FJ, Knodler LA, Steele-Mortimer O, et al. (2008) HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc Natl Acad Sci U S A 105(38): 14591–14596.
|
[63] | Saini S, Rao CV (2010) SprB is the molecular link between Salmonella pathogenicity island 1 (SPI1) and SPI4. J Bacteriol 192(9): 2459–2462.
|
[64] | Darwin KH, Miller VL (2001) Type III secretion chaperone-dependent regulation: Activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J 20(8): 1850–1862.
|
[65] | Knodler LA, Celli J, Hardt WD, Vallance BA, Yip C, et al. (2002) Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol 43(5): 1089–1103.
|
[66] | Hardt WD, Urlaub H, Galan JE (1998) A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci U S A 95(5): 2574–2579.
|
[67] | Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS, et al. (1998) Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29(3): 883–891.
|
[68] | Marinus MG, Casadesus J (2009) Roles of DNA adenine methylation in host-pathogen interactions: Mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33(3): 488–503.
|
[69] | Lawhon SD, Maurer R, Suyemoto M, Altier C (2002) Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46(5): 1451–1464.
|
[70] | Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3): 403–410.
|
[71] | Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25(17): 3389–3402.
|
[72] | Lucas S, Copeland A, Lapidus A, Cheng JF, Bruce D, et al. (2010) Complete sequence of Enterobacter cloacae SCF1. NCBI Genome Database, entry NC_014618.
|