Streptococcus pyogenes (group A streptococcus, GAS) is a Gram-positive bacterial pathogen responsible for a wide variety of diseases. To date, GAS vaccine development has focused primarily on the M-protein. The M-protein is highly variable at the amino (N)-terminus (determining serotype) but is conserved at the carboxyl (C)-terminus. Previously a 29 amino acid peptide (named J14) from the conserved region of the M-protein was identified as a potential vaccine candidate. J14 was capable of eliciting protective antibodies that recognized many GAS serotypes when co-administered with immuno-stimulants. This minimal epitope however showed no immunogenicity when administered alone. In an attempt overcome this immunological non-responsiveness, we developed a self-adjuvanting vaccine candidate composed of three components: the B-cell epitope (J14), a universal helper T-cell epitope (P25) and a lipid moiety consisting of lipoamino acids (Laas) which target Toll-like receptor 2 (TLR2). Immunological evaluation in B10.BR (H-2k) mice demonstrated that the epitope attachment to the point of lipid moiety, and the length of the Laa alkyl chain have a profound effect on vaccine immunogenicity after intranasal administration. It was demonstrated that a vaccine featuring C-terminal lipid moiety containing alkyl chains of 16 carbons, with P25 located at the N-terminus, and J14 attached to the side chain of a central lysine residue was capable of inducing optimal antibody response. These findings have considerable relevance to the development of a broad spectrum J14-based GAS vaccine and in particular provided a rational basis for peptide vaccine design based on this self-adjuvanting lipopeptide technology.
References
[1]
Metzgar D, McDonough EA, Hansen CJ, Blaesing CR, Baynes D, et al. (2010) Local changes in rates of group A Streptococcus disease and antibiotic resistance are associated with geographically widespread strain turnover events. Virulence 1: 247–253.
[2]
Brandt ER, Teh T, Relf WA, Hobb RI, Good MF (2000) Protective and nonprotective epitopes from amino termini of M proteins from Australian aboriginal isolates and reference strains of group A streptococci. Infect Immun 68: 6587–6594.
[3]
Steer AC, Carapetis JR (2009) Acute rheumatic fever and rheumatic heart disease in indigenous populations. Pediatr Clin North Am 56: 1401–1419.
[4]
Olive C, Batzloff MR, Toth I (2004) Lipid core peptide technology and group A streptococcal vaccine delivery. Expert Rev Vaccines 3: 43–58.
[5]
Robinson JH, Kehoe MA (1992) Group A streptococcal M proteins: virulence factors and protective antigens. Immunol Today 13: 362–367.
[6]
Pruksakorn S, Currie B, Brandt E, Martin D, Galbraith A, et al. (1994) Towards a vaccine for rheumatic fever: identification of a conserved target epitope on M protein of group A streptococci. Lancet 344: 639–642.
[7]
Hu MC, Walls MA, Stroop SD, Reddish MA, Beall B, et al. (2002) Immunogenicity of a 26-valent group A streptococcal vaccine. Infect Immun 70: 2171–2177.
[8]
McNeil SA, Halperin SA, Langley JM, Smith B, Warren A, et al. (2005) Safety and immunogenicity of 26-valent group a streptococcus vaccine in healthy adult volunteers. Clin Infect Dis 41: 1114–1122.
[9]
Cohen-Poradosu R, Kasper DL (2007) Group A streptococcus epidemiology and vaccine implications. Clin Infect Dis 45: 863–865.
[10]
Bessen D, Fischetti VA (1988) Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect Immun 56: 2666–2672.
[11]
Bessen D, Fischetti VA (1990) Synthetic peptide vaccine against mucosal colonization by group A streptococci. I. Protection against a heterologous M serotype with shared C repeat region epitopes. J Immunol 145: 1251–1256.
[12]
Bronze MS, McKinsey DS, Beachey EH, Dale JB (1988) Protective immunity evoked by locally administered group A streptococcal vaccines in mice. J Immunol 141: 2767–2770.
[13]
Guilherme L, Postol E, Freschi de Barros S, Higa F, Alencar R, et al. (2009) A vaccine against S. pyogenes: design and experimental immune response. Methods 49: 316–321.
[14]
Relf WA, Cooper J, Brandt ER, Hayman WA, Anders RF, et al. (1996) Mapping a conserved conformational epitope from the M protein of group A streptococci. Pept Res 9: 12–20.
[15]
Hayman WA, Toth I, Flinn N, Scanlon M, Good MF (2002) Enhancing the immunogenicity and modulating the fine epitope recognition of antisera to a helical group A streptococcal peptide vaccine candidate from the M protein using lipid-core peptide technology. Immunol Cell Biol 80: 178–187.
[16]
Bessler WG, Baier W, vd Esche U, Hoffmann P, Heinevetter L, et al. (1997) Bacterial lipopeptides constitute efficient novel immunogens and adjuvants in parenteral and oral immunization. Behring Inst Mitt. pp. 390–399.
[17]
Olive C, Toth I, Jackson D (2001) Technological advances in antigen delivery and synthetic peptide vaccine developmental strategies. Mini Rev Med Chem 1: 429–438.
[18]
Jackson DC, Lau YF, Le T, Suhrbier A, Deliyannis G, et al. (2004) A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci U S A 101: 15440–15445.
[19]
BenMohamed L, Krishnan R, Auge C, Primus JF, Diamond DJ (2002) Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses. Immunology 106: 113–121.
[20]
Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC (2002) Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J Immunol 169: 4905–4912.
[21]
Abdel-Aal AB, Batzloff MR, Fujita Y, Barozzi N, Faria A, et al. (2008) Structure-activity relationship of a series of synthetic lipopeptide self-adjuvanting group a streptococcal vaccine candidates. J Med Chem 51: 167–172.
[22]
Chua BY, Zeng W, Lau YF, Jackson DC (2007) Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups. Vaccine 25: 92–101.
Batzloff MR, Hayman WA, Davies MR, Zeng M, Pruksakorn S, et al. (2003) Protection against group A streptococcus by immunization with J8-diphtheria toxoid: contribution of J8- and diphtheria toxoid-specific antibodies to protection. J Infect Dis 187: 1598–1608.
[25]
McNeela EA, Mills KH (2001) Manipulating the immune system: humoral versus cell-mediated immunity. Adv Drug Deliv Rev 51: 43–54.
[26]
Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17: 138–146.
[27]
Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11: S45–53.