全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

DNA Barcoding Bromeliaceae: Achievements and Pitfalls

DOI: 10.1371/journal.pone.0029877

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background DNA barcoding has been successfully established in animals as a tool for organismal identification and taxonomic clarification. Slower nucleotide substitution rates in plant genomes have made the selection of a DNA barcode for land plants a much more difficult task. The Plant Working Group of the Consortium for the Barcode of Life (CBOL) recommended the two-marker combination rbcL/matK as a pragmatic solution to a complex trade-off between universality, sequence quality, discrimination, and cost. Methodology/Principal Findings It is expected that a system based on any one, or a small number of plastid genes will fail within certain taxonomic groups with low amounts of plastid variation, while performing well in others. We tested the effectiveness of the proposed CBOL Plant Working Group barcoding markers for land plants in identifying 46 bromeliad species, a group rich in endemic species from the endangered Brazilian Atlantic Rainforest. Although we obtained high quality sequences with the suggested primers, species discrimination in our data set was only 43.48%. Addition of a third marker, trnH–psbA, did not show significant improvement. This species identification failure in Bromeliaceaecould also be seen in the analysis of the GenBank's matK data set. Bromeliaceae's sequence divergence was almost three times lower than the observed for Asteraceae and Orchidaceae. This low variation rate also resulted in poorly resolved tree topologies. Among the three Bromeliaceae subfamilies sampled, Tillandsioideae was the only one recovered as a monophyletic group with high bootstrap value (98.6%). Species paraphyly was a common feature in our sampling. Conclusions/Significance Our results show that although DNA barcoding is an important tool for biodiversity assessment, it tends to fail in taxonomy complicated and recently diverged plant groups, such as Bromeliaceae. Additional research might be needed to develop markers capable to discriminate species in these complex botanical groups.

References

[1]  Vernooy R, Haribabu E, Muller MR, Vogel JH, Hebert PDN, et al. (2010) Barcoding life to conserve biological diversity: beyond the taxonomic imperative. Plos Biol 8: e1000417. doi:10.1371/journal.pbio.1000417.
[2]  Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7: 79–87. doi:10.1890/070193.
[3]  Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, et al. (2008) Climate change, deforestation, and the fate of the Amazon. Science 319: 169–172. doi:10.1126/science.1146961.
[4]  Savolainen V, Reeves G (2004) A plea for DNA banking. Science 304: 1445–1445. doi:10.1126/science.304.5676.1445b.
[5]  Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270: 313–321. doi:10.1098/rspb.2002.2218.
[6]  Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). P Natl Acad Sci Usa 103: 3657–3662. doi:10.1073/pnas.0511318103.
[7]  Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7: 135. doi:10.1186/1471-2148-7-135.
[8]  CBOL Plant Working Group (2009) A DNA barcode for land plants. P Natl Acad Sci Usa 106: 12794–12797. doi:10.1073/pnas.0905845106.
[9]  Steven GN, Subramanyam R (2009) Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Molecular Ecology Resources 9: Suppl s1172–180. doi:10.1111/j.1755-0998.2009.02642.x.
[10]  Dolye JJ, Doyle JL (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin 9: 11–15.
[11]  Cuénoud P, Savolainen V, Chatrou L, Powell M, Grayer R, et al. (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am J Bot 89: 132–144.
[12]  Fay M, Cameron K, Prance G, Lledó M (1997) Familial relationships of Rhabdodendron (Rhabdodendraceae): plastid rbcL sequences indicate a caryophyllid placement. Kew Bulletin 52(4): 923–932.
[13]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–97.
[14]  Arenas-Diaz E, Ochoterena H, Rodriguez-Vazquez K (2009) Multiple sequence alignment using a genetic algorithm and GLOCSA. Journal of Artificial Evolution and Applications 2009: 963150.
[15]  Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusett.
[16]  Farris JS, Kallersjo M, Kluge AG, Bult C (1994) Testing Significance of Incongruence. Cladistics 10(3): 315–319.
[17]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. doi:10.1093/molbev/msr121.
[18]  Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York, NY, USA.
[19]  Posada D (2008) jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25(7): 1253–1256.
[20]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5): 696–704.
[21]  Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7): 685–95.
[22]  Ebihara A, Nitta JH, Ito M (2010) Molecular Species Identification with Rich Floristic Sampling: DNA Barcoding the Pteridophyte Flora of Japan. Plos One 5: e15136. doi:10.1371/journal.pone.0015136.
[23]  Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. (2009) BLAST+: architecture and applications. BMC Bioinf 10: 421.
[24]  Givnish TJ, Barfuss MHJ, Ee BV, Riina R, Schulte K, et al. (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. Am J Bot 98: 872–895. doi:10.3732/ajb.1000059.
[25]  Pang X, Song J, Zhu Y, Xu H, Huang L, et al. (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27: 165–170. doi:10.1111/j.1096-0031.2010.00328.x.
[26]  Gao T, Sun Z, Yao H, Song J, Zhu Y, et al. (2011) Identification of Fabaceae plants using the DNA barcode matK. Planta Med 77: 92–94. doi:10.1055/s-0030-1250050.
[27]  Pang X, Song J, Zhu Y, Xie C, Chen S (2010) Using DNA barcoding to identify species within Euphorbiaceae. Planta Med 76: 1784–1786. doi:10.1055/s-0030-1249806.
[28]  Gao T, Yao H, Song J, Zhu Y, Liu C, et al. (2010) Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol Biol 10: 324. doi:10.1186/1471-2148-10-324.
[29]  Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: An example in wild potatoes. Am J Bot 96: 1177–1189. doi:10.3732/ajb.0800246.
[30]  Gonzalez MA, Baraloto C, Engel J, Mori SA, Petronelli P, et al. (2009) Identification of Amazonian Trees with DNA Barcodes. Plos One 4: e7483. doi:10.1371/journal.pone.0007483.
[31]  Steele PR, Pires JC (2011) Biodiversity assessment: State-of-the-art techniques in phylogenomics and species identification. Am J Bot 98: 415–425. doi:10.3732/ajb.1000296.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133