[1] | Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol and Ecol 116: 193–217.
|
[2] | Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, et al. (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191: 149–154.
|
[3] | Maida MJ, Coll C, Sammarco PW (1994) Shedding new light on Scleractinian coral recruitment. J Exp Mar Biol Ecol 180: 189–202.
|
[4] | Mundy CN, Babcock RC (1998) Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement. J Exp Mari Biol and Ecol 223: 235–255.
|
[5] | Harrington L, Fabricius K, De'ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85: 3428–3437.
|
[6] | Whalan S, Ettinger-Epstein P, Battershill C, de Nys R (2008) Larval vertical migration and hierarchical selectivity of settlement in a brooding marine sponge. Mar Ecol Prog Ser 368: 145–154.
|
[7] | Baird AH, Morse ANC (2004) Induction of metamorphosis in larvae of the brooding corals Acropora palifera and Stylophora pistillata. Mar Fresh Res 55: 469–472.
|
[8] | Maldonado M, Uriz MJ (1998) Microrefuge exploitation by subtidal encrusting sponges: patterns of settlement and post-settlement survival. Mar Ecol Prog Ser 174: 141–150.
|
[9] | Nozawa Y, Tanaka K, Reimer JD (2011) Reconsideration of the surface structure of settlement plates used in coral recruitment studies. Zool Stud 50(1): 53–60.
|
[10] | Raimondi PT, Morse ANC (2000) The consequences of complex behaviour in a coral. Ecology 81(11): 3193–3211.
|
[11] | Ettinger-Epstein P, Whalan S, Battershill C, de Nys R (2008) A hierarchy of settlement cues influences larval behaviour in a coral reef sponge. Mar Ecol Prog Ser 365: 103–113.
|
[12] | Hay ME (2009) Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1: 193–212.
|
[13] | Webster NS, Smith LD, Heyward AJ, Watts JEM, Webb RI, et al. (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms. App Env Micro 70(2): 1213–1221.
|
[14] | Abdul Wahab MA, de Nys R, Whalan S (2011) Larval behaviour and settlement cues of a brooding coral reef sponge. Coral Reefs 30(2): 451–460.
|
[15] | Hadfield MG (2011) Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites. Annu Rev Mar Sci 3: 453–70.
|
[16] | Campbell AH, Meritt DW, Franklin RB, Boone EL, Nicely CT, et al. (2011) Effects of age and composition of field-produced biofilms on oyster larval setting. Biofouling 27(3): 255–265.
|
[17] | Elbourne PD, Clare AS (2010) Ecological relevance of a conspecific, waterborne settlement cue in Balanus amphitrite (Cirripedia). J Exp Mar Biol Ecol 392: 99–106.
|
[18] | Mercier A, Hamel JF (2009) Reproductive periodicity and host-specific settlement and growth of a deep-water symbiotic sea anemone. Can J Zool 87: 967–980.
|
[19] | Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18: 273–279.
|
[20] | Golbuu Y, Richmond RH (2007) Substratum preferences in planula larvae of two species of scleractinian corals, Goniastrea retiformis and Stylaraea punctata. Mar Biol 152: 639–644.
|
[21] | Ritson-Williams R, Paul VJ, Arnold SN, Steneck RS (2010) Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmate and A. cervicornis. Coral Reefs 29: 71–81.
|
[22] | Grasso LC, Negri AP, Foret S, Saint R, Hayward DC, et al. (2011) The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. Dev Biol 353: 411–419.
|
[23] | Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanog Mar Biol Annu Rev 30: 273–335.
|
[24] | Takahashi T, Muneoka Y, Lohmann J, Lopez de Haro MS, Solleder G, et al. (1997) Systematic isolation of peptide signal molecules regulating development in hydra: LW amide and PW families. Proc Natl Acad Sci 94: 1241–1246.
|
[25] | Schmich J, Trepel S, Leitz T (1998) The role of GLW amides in metamorphosis of Hydractinia echinata. Dev Genes Evol 208: 267–273.
|
[26] | Iwao K, Fujisawa T, Hatta M (2002) A cnidarian neuropeptide of the GLW amide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs 21: 127–129.
|
[27] | Erwin PM, Szmant AM (2010) Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide. Coral Reefs 29: 929–939.
|
[28] | Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, et al. (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466(5): 720–725.
|
[29] | Bannister RJ, Brinkman R, Wolff C, Battershill C, de Nys R (2007) The distribution and abundance of dictyoceratid sponges in relation to hydrodynamic features: identifying candidates and environmental conditions for sponge aquaculture. Mar Freshw Res58: 624–633.
|
[30] | Whalan S, Battershill C, de Nys R (2007) Variability in reproductive output across a water quality gradient for a tropical marine sponge. Mar Biol 153(2): 163–169.
|
[31] | Whalan S, Ettinger-Epstein P, de Nys R (2008) The effect of temperature on larval pre-settlement duration and metamorphosis for the sponge, Rhopaloeides odorabile. Coral Reefs 27(4): 783–786. 33.
|
[32] | Whalan S, Battershill C, de Nys R (2007) Sexual reproduction of the brooding sponge Rhopaloeides odorabile. Coral Reefs 65: 655–663.
|
[33] | Lasker HR, Kim K (1996) Larval development and settlement behaviour of the gorgonian coral Plexaura kuna. J Exp Mar Biol Ecol 207: 161–175.
|
[34] | Fabricius K, De'ath G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19: 303–309.
|
[35] | Nelson WA (2009) Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60: 787–801.
|
[36] | Morse A, Morse DE (1984) Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surfaces of crustose red algae. J Exp Mar Biol Ecol 75: 191–215.
|
[37] | Harii SH, Kayanne HK, Takigawa HT, Hayashibara TH, Yamamoto MY (2002) Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol 141: 39–46.
|
[38] | Toonen RJ, Pawlik JR (1994) Foundations of gregariousness. Nature (Lond) 370: 511–512.
|
[39] | Kitamura M, Koyama T, Nakano Y, Uemura D (2007) Characterization of a natural inducer of coral larval metamorphosis. J Exp Mar Biol Ecol 340: 96–102.
|
[40] | Tebben J, Tapiolas DM, Motti CA, Abrego D, Negri AP, et al. (2011) Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6(4): e19082. doi:10.1371/journal.pone.0019082.
|
[41] | Maruzzo D, Conlan S, Aldred N, Clare AS, H?eg JT (2011) Video observation of surface exploration in cyprids of Balanus amphitrite:the movements of antennular sensory setae. Biofouling 27(2): 225–239.
|