全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Crustose Coralline Algae and a Cnidarian Neuropeptide Trigger Larval Settlement in Two Coral Reef Sponges

DOI: 10.1371/journal.pone.0030386

Full-Text   Cite this paper   Add to My Lib

Abstract:

In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 μm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.

References

[1]  Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol and Ecol 116: 193–217.
[2]  Morse ANC, Iwao K, Baba M, Shimoike K, Hayashibara T, et al. (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191: 149–154.
[3]  Maida MJ, Coll C, Sammarco PW (1994) Shedding new light on Scleractinian coral recruitment. J Exp Mar Biol Ecol 180: 189–202.
[4]  Mundy CN, Babcock RC (1998) Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement. J Exp Mari Biol and Ecol 223: 235–255.
[5]  Harrington L, Fabricius K, De'ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85: 3428–3437.
[6]  Whalan S, Ettinger-Epstein P, Battershill C, de Nys R (2008) Larval vertical migration and hierarchical selectivity of settlement in a brooding marine sponge. Mar Ecol Prog Ser 368: 145–154.
[7]  Baird AH, Morse ANC (2004) Induction of metamorphosis in larvae of the brooding corals Acropora palifera and Stylophora pistillata. Mar Fresh Res 55: 469–472.
[8]  Maldonado M, Uriz MJ (1998) Microrefuge exploitation by subtidal encrusting sponges: patterns of settlement and post-settlement survival. Mar Ecol Prog Ser 174: 141–150.
[9]  Nozawa Y, Tanaka K, Reimer JD (2011) Reconsideration of the surface structure of settlement plates used in coral recruitment studies. Zool Stud 50(1): 53–60.
[10]  Raimondi PT, Morse ANC (2000) The consequences of complex behaviour in a coral. Ecology 81(11): 3193–3211.
[11]  Ettinger-Epstein P, Whalan S, Battershill C, de Nys R (2008) A hierarchy of settlement cues influences larval behaviour in a coral reef sponge. Mar Ecol Prog Ser 365: 103–113.
[12]  Hay ME (2009) Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1: 193–212.
[13]  Webster NS, Smith LD, Heyward AJ, Watts JEM, Webb RI, et al. (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms. App Env Micro 70(2): 1213–1221.
[14]  Abdul Wahab MA, de Nys R, Whalan S (2011) Larval behaviour and settlement cues of a brooding coral reef sponge. Coral Reefs 30(2): 451–460.
[15]  Hadfield MG (2011) Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites. Annu Rev Mar Sci 3: 453–70.
[16]  Campbell AH, Meritt DW, Franklin RB, Boone EL, Nicely CT, et al. (2011) Effects of age and composition of field-produced biofilms on oyster larval setting. Biofouling 27(3): 255–265.
[17]  Elbourne PD, Clare AS (2010) Ecological relevance of a conspecific, waterborne settlement cue in Balanus amphitrite (Cirripedia). J Exp Mar Biol Ecol 392: 99–106.
[18]  Mercier A, Hamel JF (2009) Reproductive periodicity and host-specific settlement and growth of a deep-water symbiotic sea anemone. Can J Zool 87: 967–980.
[19]  Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18: 273–279.
[20]  Golbuu Y, Richmond RH (2007) Substratum preferences in planula larvae of two species of scleractinian corals, Goniastrea retiformis and Stylaraea punctata. Mar Biol 152: 639–644.
[21]  Ritson-Williams R, Paul VJ, Arnold SN, Steneck RS (2010) Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmate and A. cervicornis. Coral Reefs 29: 71–81.
[22]  Grasso LC, Negri AP, Foret S, Saint R, Hayward DC, et al. (2011) The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. Dev Biol 353: 411–419.
[23]  Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanog Mar Biol Annu Rev 30: 273–335.
[24]  Takahashi T, Muneoka Y, Lohmann J, Lopez de Haro MS, Solleder G, et al. (1997) Systematic isolation of peptide signal molecules regulating development in hydra: LW amide and PW families. Proc Natl Acad Sci 94: 1241–1246.
[25]  Schmich J, Trepel S, Leitz T (1998) The role of GLW amides in metamorphosis of Hydractinia echinata. Dev Genes Evol 208: 267–273.
[26]  Iwao K, Fujisawa T, Hatta M (2002) A cnidarian neuropeptide of the GLW amide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs 21: 127–129.
[27]  Erwin PM, Szmant AM (2010) Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide. Coral Reefs 29: 929–939.
[28]  Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, et al. (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466(5): 720–725.
[29]  Bannister RJ, Brinkman R, Wolff C, Battershill C, de Nys R (2007) The distribution and abundance of dictyoceratid sponges in relation to hydrodynamic features: identifying candidates and environmental conditions for sponge aquaculture. Mar Freshw Res58: 624–633.
[30]  Whalan S, Battershill C, de Nys R (2007) Variability in reproductive output across a water quality gradient for a tropical marine sponge. Mar Biol 153(2): 163–169.
[31]  Whalan S, Ettinger-Epstein P, de Nys R (2008) The effect of temperature on larval pre-settlement duration and metamorphosis for the sponge, Rhopaloeides odorabile. Coral Reefs 27(4): 783–786. 33.
[32]  Whalan S, Battershill C, de Nys R (2007) Sexual reproduction of the brooding sponge Rhopaloeides odorabile. Coral Reefs 65: 655–663.
[33]  Lasker HR, Kim K (1996) Larval development and settlement behaviour of the gorgonian coral Plexaura kuna. J Exp Mar Biol Ecol 207: 161–175.
[34]  Fabricius K, De'ath G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19: 303–309.
[35]  Nelson WA (2009) Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60: 787–801.
[36]  Morse A, Morse DE (1984) Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surfaces of crustose red algae. J Exp Mar Biol Ecol 75: 191–215.
[37]  Harii SH, Kayanne HK, Takigawa HT, Hayashibara TH, Yamamoto MY (2002) Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol 141: 39–46.
[38]  Toonen RJ, Pawlik JR (1994) Foundations of gregariousness. Nature (Lond) 370: 511–512.
[39]  Kitamura M, Koyama T, Nakano Y, Uemura D (2007) Characterization of a natural inducer of coral larval metamorphosis. J Exp Mar Biol Ecol 340: 96–102.
[40]  Tebben J, Tapiolas DM, Motti CA, Abrego D, Negri AP, et al. (2011) Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6(4): e19082. doi:10.1371/journal.pone.0019082.
[41]  Maruzzo D, Conlan S, Aldred N, Clare AS, H?eg JT (2011) Video observation of surface exploration in cyprids of Balanus amphitrite:the movements of antennular sensory setae. Biofouling 27(2): 225–239.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133