全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Detection of Wolbachia in the Tick Ixodes ricinus is Due to the Presence of the Hymenoptera Endoparasitoid Ixodiphagus hookeri

DOI: 10.1371/journal.pone.0030692

Full-Text   Cite this paper   Add to My Lib

Abstract:

The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae) – strictly associated with ticks for their development - is infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria.

References

[1]  Parola P, Didier R (2001) Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clinical Infectious Diseases 32: 897–928.
[2]  Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129: S3–S14.
[3]  Sonenshine DE (1991) Biology of ticks:. Oxford University Press.
[4]  Randolph SE (2004) Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129: S37–S65.
[5]  Parola P, Paddock CD, Raoult D (2005) Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clinical Microbiology Reviews 18: 719-+.
[6]  Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM (2009) Evolution and diversity of Rickettsia bacteria. Bmc Biology 7:
[7]  Clay K, Klyachko O, Grindle N, Civitello D, Oleske D, et al. (2008) Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol Ecol 17: 4371–4381.
[8]  Zhong JM, Jasinskas A, Barbour AG (2007) Antibiotic Treatment of the Tick Vector Amblyomma americanum Reduced Reproductive Fitness. Plos One 2:
[9]  Lo N, Beninati T, Sassera D, Bouman EAP, Santagati S, et al. (2006) Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. Environmental Microbiology 8: 1280–1287.
[10]  Epis S, Sassera D, Beninati T, Lo N, Beati L, et al. (2008) Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology 135: 485–494.
[11]  Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, et al. (2006) ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol 56: 2535–2540.
[12]  Sacchi L, Bighardi E, Corona S, Beninati T, Lo N, et al. (2004) A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue & Cell 36: 43–53.
[13]  Sassera D, Lo N, Epis S, D'Auria G, Montagna M, et al. (2011) Phylogenomic evidence for the presence of a flagellum and cbb3 oxidase in the free-living mitochondrial ancestor. Molecular Biology and Evolution.
[14]  Mediannikov O, Sekeyova Z, Birg M-L, Raoult D (2010) A Novel Obligate Intracellular Gamma-Proteobacterium Associated with Ixodid Ticks Diplorickettsia massiliensis, Gen. Nov., Sp. Nov. PLoS ONE 5: e11478.
[15]  Andreotti R, de Leon AAP, Dowd SE, Guerrero FD, Bendele KG, et al. (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. Bmc Microbiology 11:
[16]  Carpi G, Cagnacci F, Wittekindt NE, Zhao F, Qi J, et al. (2011) Metagenomic Profile of the Bacterial Communities Associated with Ixodes ricinus Ticks. PLoS ONE 6: e25604.
[17]  Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, et al. (2010) Species Interactions in a Parasite Community Drive Infection Risk in a Wildlife Population. Science 330: 243–246.
[18]  Dib L, Bitam I, Tahri M, Bensouilah M, De Meeus T (2008) Competitive exclusion between piroplasmosis and anaplasmosis agents within cattle. PLoS Pathog 4: e7.
[19]  Kirkness EF, Haas BJ, Sun WL, Braig HR, Perotti MA, et al. (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America 107: 12168–12173.
[20]  Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences 107: 769–774.
[21]  Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, et al. (2011) Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae. Science 332: 855–858.
[22]  Mousson L, Martin E, Zouache K, Madec Y, Mavingui P, et al. (2010) Wolbachia modulates Chikungunya replication in Aedes albopictus. Molecular Ecology 19: 1953–1964.
[23]  Bian GW, Xu Y, Lu P, Xie Y, Xi ZY (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathogens. e1000833 p.
[24]  Hedges LM, Brownlie JC, O′Neill SL, Johnson KN (2008) Wolbachia and Virus Protection in Insects. Science 322: 702.
[25]  Werren JH (1997) Biology of Wolbachia. Annual Review of Entomology 42: 587–609.
[26]  Raychoudhury R, Grillenberger BK, Gadau J, Bijlsma R, van de Zande L, et al. (2010) Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial-Wolbachia sweep in North America. Heredity 104: 318–326.
[27]  Engelst?dter J, Hurst GDD (2007) The Impact of Male-Killing Bacteria on Host Evolutionary Processes. Genetics 175: 245–254.
[28]  Reis C, Cote M, Paul REL, Bonnet S (2011) Questing Ticks in Suburban Forest Are Infected by at Least Six Tick-Borne Pathogens. Vector-Borne and Zoonotic Diseases 11:
[29]  Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, et al. (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6: 27.
[30]  Cooley RA, Kohls GM (1919) Egg laying of Ixodiphagus caucurtei Du Buysson in larval ticks. Science 68: 656.
[31]  Brumpt E (1930) Parasitisme latent de l′Ixodiphagus caucurtei chez les larves gorgées et les nymphes à jeun de divers ixodines (Ixodes ricinus et Rhipicephalus sanguineus). Comptes Rendus de l′Académie des Sciences de Paris 191: 1085–1087.
[32]  Baldo L, Bordenstein S, Wernegreen JJ, Werren JH (2006) Widespread Recombination Throughout Wolbachia Genomes. Molecular Biology and Evolution 23: 437–449.
[33]  Hartelt K, Oehme R, Frank H, Brockmann SO, Hassler D, et al. (2004) Pathogens and symbionts in ticks: prevalence of Anaplasma phagocytophilum (Ehrlichia sp.), Wolbachia sp., Rickettsia sp., and Babesia sp. in Southern Germany. Int J Med Microbiol 293: Suppl 3786–92.
[34]  van Overbeek L, Gassner F, van der Plas CL, Kastelein P, Rocha UND, et al. (2008) Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. Fems Microbiology Ecology 66: 72–84.
[35]  Sarih MH, M′Ghirbi Y, Bouattour A, Gern L, Baranton G, et al. (2005) Detection and Identification of Ehrlichia spp. in Ticks Collected in Tunisia and Morocco. J Clin Microbiol 43: 1127–1132.
[36]  Hu R, Hyland KE, Oliver JH Jr (1998) A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). Systematic and Applied Acarology 3: 1362–1971.
[37]  Wood HP (1911) Notes on the life history of the tick parasite Hunterellus hookeri Howard. Journal of Economic Entomology 4: 425–431.
[38]  Niebylski ML, Peacock MG, Fischer ER, Porcella SF, Schwan TG (1997) Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Applied and Environmental Microbiology 63: 3933–3940.
[39]  Hu RJ, Hyland KE (1998) Effects of the feeding process of Ixodes scapularis (Acari : Ixodidae) on embryonic development of its parasitoid, Ixodiphagus hookeri (Hymenoptera : Encyrtidae). Journal of Medical Entomology 35: 1050–1053.
[40]  Collatz J, Selzer P, Fuhrmann A, Oehme RM, Mackenstedt U, et al. (2011) A hidden beneficial: biology of the tick-wasp Ixodiphagus hookeri in Germany. Journal of Applied Entomology 135: 351–358.
[41]  Breeuwer JAJ, Werren JH (1993) Cytoplasmic Incompatibility and Bacterial Density in Nasonia vitripennis. Genetics 135: 565–574.
[42]  Brumpt ME (1913) Utilisation des insectes auxiliaires – Entomophages dans la lutte contre les insectes pathogenes. La Presse Medicale 36: 359–361.
[43]  Stafford KC, Denicola AJ, Kilpatrick HJ (2003) Reduced abundance of Ixodes scapularis (Acari : Ixodidae) and the tick parasitoid Ixodiphagus hookeri (Hymenoptera : Encyrtidae) with reduction of white-tailed deer. Journal of Medical Entomology 40: 642–652.
[44]  Haine ER (2008) Symbiont-mediated protection. Proceedings of the Royal Society B-Biological Sciences 275: 353–361.
[45]  Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Applied and Environmental Microbiology 63: 3926–3932.
[46]  Benson MJ, Gawronski JD, Eveleigh DE, Benson DR (2004) Intracellular symbionts and other bacteria associated with deer ticks (Ixodes scapularis) from Nantucket and Wellfleet, Cape Cod, Massachusetts. Applied and Environmental Microbiology 70: 616–620.
[47]  Moreno CX, Moy F, Daniels TJ, Godfrey HP, Cabello FC (2006) Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environmental Microbiology 8: 761–772.
[48]  Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, et al. (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317: 1753–1756.
[49]  Ishmael N, Hotopp JC, Ioannidis P, Biber S, Sakamoto J, et al. (2009) Extensive genomic diversity of closely related Wolbachia strains. Microbiology 155: 2211–2222.
[50]  Mather TN, Piesman J, Spielman A (1987) Absence of spirochaetes (Borrelia burgdorferi) and piroplasms (Babesia microti) in deer ticks (Ixodes dammini) parasitized by chalcid wasps (Hunterellus hookeri). Medical and Veterinary Entomology 1: 3–8.
[51]  Bonnet S, Jouglin M, Malandrin L, Becker C, Agoulon A, et al. (2007) Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology 134: 197–207.
[52]  Heath ACG, Cane RP (2010) A new species of Ixodiphagus (Hymenoptera: Chalcidoidea: Encyrtidae) parasitizing seabird ticks in New Zealand. New Zealand Journal of Zoology 37: 147–155.
[53]  Eggleton P, Belshaw R (1992) Insect Parasitoids: An Evolutionary Overview. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 337: 1–20.
[54]  Quaraishi MS (1958) Morphology of two chalcidoid parasites of ticks, Hunterellus hookeri Howard, 1908, and Ixodiphagus texanus Howard, 1907. The American Midland Naturalist 59: 489.
[55]  Braig HR, Zhou W, Dobson SL, O′Neill SL (1998) Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis. J Bacteriol 180: 2373–2378.
[56]  Werren JH, Zhang W, Guo LR (1995) Evolution and Phylogeny of Wolbachia - reproductive parasites of arthropods. Proceedings of the Royal Society of London Series B-Biological Sciences 261: 55–63.
[57]  Scheffer SJ, Grissell EE (2003) Tracing the geographical origin of Megastigmus transvaalensis (Hymenoptera : Torymidae): an African wasp feeding on a South American plant in North America. Molecular Ecology 12: 415–421.
[58]  Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua C, et al. (2004) Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. International Journal for Parasitology 34: 191–203.
[59]  Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, et al. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research 38: W695–W699.
[60]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution.
[61]  Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America 101: 11030–11035.
[62]  Inokuma H, Raoult D, Brouqui P (2000) Detection of Ehrlichia platys DNA in brown dog ticks (Rhipicephalus sanguineus) in Okinawa Island, Japan. Journal of Clinical Microbiology 38: 4219–4221.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133