[1] | Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, et al. (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2: 494–501.
|
[2] | Desjeux P (2004) Leishmaniasis. Nat Rev Microbiol 2: 692.
|
[3] | Bhowmick S, Ravindran R, Ali N (2007) Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine 25: 6544–6556.
|
[4] | Coler RN, Skeiky YA, Bernards K, Greeson K, Carter D, et al. (2002) Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect Immun 70: 4215–4225.
|
[5] | Pham NK, Mouriz J, Kima PE (2005) Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation. Infect Immun 73: 8322–8333.
|
[6] | Descoteaux A, Turco SJ (2002) Functional aspects of the Leishmania donovani lipophosphoglycan during macrophage infection. Microbes Infect 4: 975–981.
|
[7] | Garg R, Srivastava JK, Pal A, Naik S, Dube A (2005) Isolation of integral membrane proteins of Leishmania promastigotes and evaluation of their prophylactic potential in hamsters against experimental visceral leishmaniasis. Vaccine 23: 1189–1196.
|
[8] | Afrin F, Rajesh R, Anam K, Gopinath M, Pal S, et al. (2002) Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infect Immun 70: 6697–6706.
|
[9] | Reed SG, Scott P (1993) T-cell and cytokine responses in leishmaniasis. Curr Opin Immunol 5: 524–531.
|
[10] | Murray HW, Hariprashad J, Coffman RL (1997) Behavior of visceral Leishmania donovani in an experimentally induced T helper cell 2 (Th2)-associated response model. J Exp Med 185: 867–874.
|
[11] | Skeiky YA, Kennedy M, Kaufman D, Borges MM, Guderian JA, et al. (1998) LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J Immunol 161: 6171–6179.
|
[12] | Russo DM, Jardim A, Carvalho EM, Sleath PR, Armitage RJ, et al. (1993) Mapping human T cell epitopes in Leishmania gp63: identification of cross-reactive and species-specific epitopes. J Immunol 150: 4713.
|
[13] | Garg R, Gupta SK, Tripathi P, Hajela K, Sundar S, et al. (2006) Leishmania donovani: identification of stimulatory soluble antigenic proteins using cured human and hamster lymphocytes for their prophylactic potential against visceral leishmaniasis. Vaccine 24: 2900–2909.
|
[14] | Garg R, Dube A (2006) Animal models for vaccine studies for visceral leishmaniasis. Indian J Med Res 123: 439–454.
|
[15] | Bates PA (1993) Characterization of developmentally-regulated nucleases in promastigotes and amastigotes of Leishmania mexicana. FEMS Microbiol Lett 107: 53–58.
|
[16] | Eperon S, McMahon-Pratt D (1989) Extracellular cultivation and morphological characterization of amastigote-like forms of Leishmania panamensis and L. braziliensis. J Protozool 36: 502–510.
|
[17] | Pan AA (1984) Leishmania mexicana: serial cultivation of intracellular stages in a cell-free medium. Exp Parasitol 58: 72–80.
|
[18] | Burchmore RJ, Barrett MP (2001) Life in vacuoles–nutrient acquisition by Leishmania amastigotes. Int J Parasitol 31: 1311–1320.
|
[19] | Rochette A, Raymond F, Corbeil J, Ouellette M, Papadopoulou B (2009) Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 165: 32–47.
|
[20] | Garg R, Gupta SK, Tripathi P, Naik S, Sundar S, et al. (2005) Immunostimulatory cellular responses of cured Leishmania-infected patients and hamsters against the integral membrane proteins and non-membranous soluble proteins of a recent clinical isolate of Leishmania donovani. Clin Exp Immunol 140: 149–156.
|
[21] | Chang KP (1980) Human cutaneous lieshmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science 209: 1240–1242.
|
[22] | Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
|
[23] | Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350–4354.
|
[24] | Scott DA, Coombs GH, Sanderson BE (1987) Effects of methotrexate and other antifolates on the growth and dihydrofolate reductase activity of Leishmania promastigotes. Biochem Pharmacol 36: 2043–2045.
|
[25] | Choudhry A, Guru PY, Saxena RP, Tandon A, Saxena KC (1990) Enzyme-linked immunosorbent assay in the diagnosis of kala-azar in Bhadohi (Varanasi), India. Trans R Soc Trop Med Hyg 84: 363–366.
|
[26] | Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, et al. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19: 837–844.
|
[27] | Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21: 3329–3344.
|
[28] | Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141: 2407–2412.
|
[29] | Samant M, Sahasrabuddhe AA, Singh N, Gupta SK, Sundar S, et al. (2007) Proteophosphoglycan is differentially expressed in sodium stibogluconate-sensitive and resistant Indian clinical isolates of Leishmania donovani. Parasitology 134: 1175–1184.
|
[30] | Glaser TA, Moody SF, Handman E, Bacic A, Spithill TW (1991) An antigenically distinct lipophosphoglycan on amastigotes of Leishmania major. Mol Biochem Parasitol 45: 337–344.
|
[31] | Charest H, Zhang WW, Matlashewski G (1996) The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3′-untranslated region. J Biol Chem 271: 17081–17090.
|
[32] | Kumari S, Samant M, Khare P, Sundar S, Sinha S, et al. (2008) Induction of Th1-type cellular responses in cured/exposed Leishmania-infected patients and hamsters against polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1 kDa. Vaccine 26: 4813–4818.
|
[33] | Khalil EA, El Hassan AM, Zijlstra EE, Mukhtar MM, Ghalib HW, et al. (2000) Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356: 1565–1569.
|
[34] | Kahl LP, Scott CA, Lelchuk R, Gregoriadis G, Liew FY (1989) Vaccination against murine cutaneous leishmaniasis by using Leishmania major antigen/liposomes. Optimization and assessment of the requirement for intravenous immunization. J Immunol 142: 4441–4449.
|
[35] | Afonso LC, Scharton TM, Vieira LQ, Wysocka M, Trinchieri G, et al. (1994) The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263: 235–237.
|
[36] | Champsi J, McMahon-Pratt D (1988) Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infect Immun 56: 3272–3279.
|
[37] | Jaffe CL, Rachamim N, Sarfstein R (1990) Characterization of two proteins from Leishmania donovani and their use for vaccination against visceral leishmaniasis. J Immunol 144: 699–706.
|
[38] | White AC Jr, McMahon-Pratt D (1990) Prophylactic immunization against experimental Leishmania donovani infection by use of a purified protein vaccine. J Infect Dis 161: 1313–1314.
|
[39] | Melby PC (1991) Experimental leishmaniasis in humans: review. Rev Infect Dis 13: 1009–1017.
|
[40] | Mougneau E, Altare F, Wakil AE, Zheng S, Coppola T, et al. (1995) Expression cloning of a protective Leishmania antigen. Science 268: 563–566.
|
[41] | McMahon-Pratt D, Kima PE, Soong L (1998) Leishmania amastigote target antigens: the challenge of a stealthy intracellular parasite. Parasitol Today 14: 31–34.
|
[42] | Connell ND, Medina-Acosta E, McMaster WR, Bloom BR, Russell DG (1993) Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci U S A 90: 11473–11477.
|
[43] | Gicheru MM, Olobo JO (1994) Evaluation of recombinant gp63, the major Leishmania surface glycoprotein, as a diagnostic molecule for leishmaniasis in vervet monkeys. Acta Trop 58: 345–348.
|
[44] | Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14: 229–243.
|
[45] | Silvestre R, Cordeiro-da-Silva A, Tavares J, Sereno D, Ouaissi A (2006) Leishmania cytosolic silent information regulatory protein 2 deacetylase induces murine B-cell differentiation and in vivo production of specific antibodies. Immunology 119: 529–540.
|
[46] | Cabral SM, Silvestre RL, Santarem NM, Tavares JC, Silva AF, et al. (2008) A Leishmania infantum cytosolic tryparedoxin activates B cells to secrete interleukin-10 and specific immunoglobulin. Immunology 123: 555–565.
|
[47] | Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. . Annu Rev Immunol 13: 251.
|
[48] | Sypek JP, Chung CL, Mayor SE, Subramanyam JM, Goldman SJ, et al. (1993) Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med 177: 1797–1802.
|
[49] | Ghalib HW, Whittle JA, Kubin M, Hashim FA, el-Hassan AM, et al. (1995) IL-12 enhances Th1-type responses in human Leishmania donovani infections. J Immunol 154: 4623–4629.
|
[50] | Bloom S (2005) Parasite genome similarities offer hope for new drugs and vaccines. J Clin Invest 115: 2300–2301.
|
[51] | Tripathi P, Ray S, Sunder S, Dube A, Naik S (2006) Identification of Leishmania donovani antigens stimulating cellular immune responses in exposed immune individuals. Clin Exp Immunol 143: 380–388.
|
[52] | White AC Jr, Castes M, Garcia L, Trujillo D, Zambrano L (1992) Leishmania chagasi antigens recognized in cured visceral leishmaniasis and asymptomatic infection. Am J Trop Med Hyg 46: 123–131.
|
[53] | Costa SR, D'Oliveira A Jr, Bacellar O, Carvalho EM (1999) T cell response of asymptomatic Leishmania chagasi infected subjects to recombinant leishmania antigens. Mem Inst Oswaldo Cruz 94: 367–370.
|
[54] | Melby PC, Sacks DL (1989) Identification of antigens recognized by T cells in human leishmaniasis: analysis of T-cell clones by immunoblotting. Infect Immun 57: 2971–2976.
|
[55] | Gifawesen C, Farrell JP (1989) Comparison of T-cell responses in self-limiting versus progressive visceral Leishmania donovani infections in golden hamsters. Infect Immun 57: 3091–3096.
|
[56] | Rodrigues Junior V, Da Silva JS, Campos-Neto A (1992) Selective inability of spleen antigen presenting cells from Leishmania donovani infected hamsters to mediate specific T cell proliferation to parasite antigens. Parasite Immunol 14: 49–58.
|
[57] | Liew FY (1991) Role of cytokines in killing of intracellular pathogens. Immunol Lett 30: 193–197.
|
[58] | Assreuy J, Cunha FQ, Epperlein M, Noronha-Dutra A, O'Donnell CA, et al. (1994) Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol 24: 672–676.
|
[59] | Diefenbach A, Schindler H, Rollinghoff M, Yokoyama WM, Bogdan C (1999) Requirement for type 2 NO synthase for IL-12 signaling in innate immunity. Science 284: 951–955.
|