Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition) helix of the DNA-binding homeodomain. The morphological phenotype of pitx2ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ~6–8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates.
References
[1]
Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, et al. (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14(4): 392–399.
[2]
Tümer Z, Bach-Holm D (2009) Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet 17: 1527–1539.
[3]
Hjalt TA, Semina EV (2005) Current molecular understanding of Axenfeld-Rieger syndrome. Expert Rev Mol Med 7(25): 1–17.
[4]
Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, et al. (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394(6693): 545–551.
[5]
Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, et al. (1999) The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126(6): 1225–1234.
[6]
Campione M, Ros MA, Icardo JM, Piedra E, Christoffels VM, et al. (2001) Pitx2 expression defines a left cardiac lineage of cells: evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev Biol 231(1): 252–264.
[7]
Lin CR, Kioussi C, O'Connell S, Briata P, Szeto D, et al. (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401(6750): 279–282.
[8]
Kitamura K, Miura H, Miyagawa-Tomita S, Yanazawa M, Katoh-Fukui Y, et al. (1999) Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, exta- and periocular mesoderm and right pulmonary isomerism. Development 126(24): 5749–5758.
[9]
Bisgrove BW, Essner JJ, Yost HJ (2000) Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127(16): 3567–3579.
[10]
Martin DM, Skidmore JM, Philips ST, Vieira C, Gage PJ, et al. (2004) PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Dev Biol 267(1): 93–108.
[11]
Ishimaru Y, Komatsu T, Kasahara M, Katoh-Fukui Y, Ogawa H, et al. (2008) Mechanism of asymmetric ovarian development in chick embryos. Development 135(4): 677–685.
[12]
Cox CJ, Espinoza HM, McWilliams B, Chappell K, Morton L, et al. (2002) Differential regulation of gene expression by PITX2 isoforms. J Biol Chem 277(28): 25001–25010.
[13]
Schweickert A, Campione M, Steinbeisser H, Blum M (2000) Pitx2 isoforms: involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left-right asymmetry. Mech Dev 90(1): 41–51.
[14]
Yu X, St Amand TR, Wang S, Li G, Zhang Y, et al. (2001) Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick. Development 128(6): 1005–1013.
[15]
Essner JJ, Branford WW, Zhang J, Yost HJ (2000) Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127: 1081–1093.
[16]
Christiaen L, Bourrat F, Joly JS (2005) A modular cis-regulatory system controls isoform-specific pitx expression in ascidian stomodaeum. Dev Biol 277(2): 557–566.
[17]
Liu W, Selever J, Lu MF, Martin JF (2003) Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development 130: 6375–6385.
[18]
Toro R, Saadi I, Kuburas A, Nemer M, Russo AF (2004) Cell-specific activation of the atrial natriuretic factor promoter by PITX2 and MEF2A. J Biol Chem 279(50): 52087–52094.
[19]
Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF (1999) Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401(6750): 276–278.
[20]
Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126: 4643–4651.
[21]
Evans AL, Gage PJ (2005) Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum Mol Genet 14(22): 3347–3359.
Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5): 353–367.
[24]
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310.
[25]
Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Bio 248: 307–318.
[26]
Yoshikawa S, Norcom E, Nakamura H, Yee RW, Zhao XC (2007) Transgenic analysis of the anterior eye-specific enhancers of the zebrafish gelsonlin-like 1 (gsnl1) gene. Dev Dyn 236: 1929–1938.
[27]
Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, et al. (2007) p53 activation by knockdown technologies. PLOS Genetics 3: e78.
[28]
Shi X, Bosenko DV, Zinkevich NS, Foley S, Hyde DR, et al. (2005) Zebrafish pitx3 is necessary for normal lens and retinal development. Mech Dev 122(4): 513–27.
[29]
Barrallo-Gimeno A, Holzschuh J, Driever W, Knapik EW (2004) Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development 131: 1463–1477.
[30]
Piotrowski T, Schilling TF, Brand M, Jiang YJ, Heisenberg CP, et al. (1996) Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 123: 345–356.
[31]
Alvarez Y, Cederlund ML, Cottell DC, Bill BR, Ekker SC, et al. (2007) Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC Dev Biol 7: 114.
[32]
Volkmann BA, Zinkevich NS, Mustonen A, Schilter KF, Bosenko DV, et al. (2011) Potential novel mechanism for Axenfeld-Rieger syndrome: deletion of a distant region containing regulatory elements of PITX2. Invest Ophthalmol Vis Sci 52(3): 1450–1459.
[33]
Nelms BL, Labosky PA (2010) Transcriptional Control of Neural Crest Development. 227 p. Morgan and Claypool Life Sciences.
[34]
Lister JA, Cooper C, Nguyen K, Modrell M, Grant K, et al. (2006) Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev Biol 290(1): 92–104.
[35]
Kraus P, Lufkin T (2006) Dlx homeobox gene control of mammalian limb and craniofacial development. Am J Med Genet A 140(13): 1366–1374.
[36]
Sperber SM, Saxena V, Hatch G, Ekker M (2008) Zebrafish dlx2a contributes to hindbrain neural crest survival, is necessary for differentiation of sensory ganglia and functions with dlx1a in maturation of the arch cartilage elements. Dev Biol 314(1): 59–70.
[37]
Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB, et al. (2008) Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet 4(2): e29.
[38]
Zilinski CA, Shah R, Lane ME, Jamrich M (2005) Modulation of zebrafish pitx3 expression in the primordia of the pituitary, lens, olfactory epithelium and cranial ganglia by hedgehog and nodal signaling. Genesis 41(1): 33–40.
[39]
Gage PJ, Qian M, Wu D, Rosenberg KI (2008) The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev Biol 317(1): 310–324.
[40]
Zhao XC, Yee RW, Norcom E, Burgess H, Avanesov AS, et al. (2006) The zebrafish cornea: structure and development. Invest Ophthalmol Vis Sci 47(10): 4341–4348.
[41]
Chen JY, Chang BE, Chen YH, Lin CJ, Wu JL, et al. (2001) Molecular cloning, developmental expression, and hormonal regulation of zebrafish (Danio rerio) beta crystallin B1, a member of the superfamily of beta crystallin proteins. Biochem Biophys Res Commun 285(1): 105–110.
[42]
Dahlman JM, Margot KL, Ding L, Horwitz J, Posner M (2005) Zebrafish alpha-crystallins: protein structure and chaperone-like activity compared to their mammalian orthologs. Mol Vis 11: 88–96.
[43]
Espinoza HM, Cox CJ, Semina EV, Amendt BA (2002) A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum Mol Genet 11(7): 743–753.
[44]
Rutland CS, Mitchell CA, Nasir M, Konerding MA, Drexler HC (2007) Microphthalmia, persistent hyperplastic hyaloid vasculature and lens anomalies following overexpression of VEGF-A188 from the alphaA-crystallin promoter. Mol Vis 13: 47–56.
[45]
Haddad R, Font R L, Reeser F (1978) Persistent hyperplastic primary vitreous. A clinicopathologic study of 62 cases and review of the literature. Surv Ophthalmol 23: 123–124.
[46]
Silbert M, Gurwood AS (2000) Persistent hyperplastic primary vitreous. Clin Eye Vis Care 12(3–4): 131–137.
[47]
Goldberg MF (1997) Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). LIV Edward Jackson Memorial Lecture. Am J Ophthalmol 124(5): 587–626.
[48]
Arikawa A, Yoshida S, Yoshikawa H, Ishikawa K, Yamaji Y, et al. (2010) Case of novel PITX2 gene mutation associated with Peters' anomaly and persistent hyperplastic primary vitreous. Eye (Lond) 24(2): 391–393.
[49]
Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, et al. (2000) The human hyaloid system: cell death and vascular regression. Exp Eye Res 70(6): 767–776.
[50]
Ito M, Yoshioka M (1999) Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat Embryol (Berl) 200(4): 403–411.
[51]
Chang B, Smith RS, Peters M, Savinova OV, Hawes NL, et al. (2001) Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet 2: 18.
[52]
Chen Y, Doughman YQ, Gu S, Jarrell A, Aota S, et al. (2008) Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis. Development 135(17): 2939–2948.
[53]
Semina EV, Bosenko DV, Zinkevich NC, Soules KA, Hyde DR, et al. (2006) Mutations in laminin alpha 1 result in complex, lens-independent ocular phenotypes in zebrafish. Dev Biol 299(1): 63–77.
[54]
Edwards MM, Mammadova-Bach E, Alpy F, Klein A, Hicks WL, et al. (2010) Mutations in Lama1 disrupt retinal vascular development and inner limiting membrane formation. J Biol Chem 285(10): 7697–7711.
[55]
Richter M, Gottanka J, May CA, Welge-Lüssen U, Berger W, et al. (1998) Retinal vasculature changes in Norrie disease mice. Invest Ophthalmol Vis Sci 39(12): 2450–7.
[56]
Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, et al. (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437(7057): 417–421.
[57]
Liu C, Nathans J (2008) An essential role for frizzled 5 in mammalian ocular development. Development 135(21): 3567–3576.
[58]
Zhang J, Fuhrmann S, Vetter ML (2008) A nonautonomous role for retinal frizzled-5 in regulating hyaloid vitreous vasculature development. Invest Ophthalmol Vis Sci 49(12): 5561–5567.
[59]
Bredrup C, Matejas V, Barrow M, Bláhová K, Bockenhauer D, et al. (2008) Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol 146(4): 602–611.
[60]
Dhingra S, Shears DJ, Blake V, Stewart H, Patel CK (2006) Advanced bilateral persistent fetal vasculature associated with a novel mutation in the Norrie gene. Br J Ophthalmol 90(10): 1324–5.
[61]
Robitaille JM, Wallace K, Zheng B, Beis MJ, Samuels M, et al. (2009) Phenotypic overlap of familial exudative vitreoretinopathy (FEVR) with persistent fetal vasculature (PFV) caused by FZD4 mutations in two distinct pedigrees. Ophthalmic Genet 30(1): 23–30.
[62]
Bamforth SD, Bragan?a J, Farthing CR, Schneider JE, Broadbent C, et al. (2004) Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 36(11): 1189–1196.