全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Active and Passive Immunization Protects against Lethal, Extreme Drug Resistant-Acinetobacter baumannii Infection

DOI: 10.1371/journal.pone.0029446

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extreme-drug-resistant (XDR) Acinetobacter baumannii is a rapidly emerging pathogen causing infections with unacceptably high mortality rates due to inadequate available treatment. New methods to prevent and treat such infections are a critical unmet medical need. To conduct a rational vaccine discovery program, OmpA was identified as the primary target of humoral immune response after intravenous infection by A. baumannii in mice. OmpA was >99% conserved at the amino acid level across clinical isolates harvested between 1951 and 2009 from cerebrospinal fluid, blood, lung, and wound infections, including carbapenem-resistant isolates, and was ≥89% conserved among other sequenced strains, but had minimal homology to the human proteome. Vaccination of diabetic mice with recombinant OmpA (rOmpA) with aluminum hydroxide adjuvant markedly improved survival and reduced tissue bacterial burden in mice infected intravenously. Vaccination induced high titers of anti-OmpA antibodies, the levels of which correlated with survival in mice. Passive transfer with immune sera recapitulated protection. Immune sera did not enhance complement-mediated killing but did enhance opsonophagocytic killing of A. baumannii. These results define active and passive immunization strategies to prevent and treat highly lethal, XDR A. baumannii infections.

References

[1]  Walker B, Barrett S, Polasky S, Galaz V, Folke C, et al. (2009) Environment. Looming global-scale failures and missing institutions. Science 325: 1345–1346.
[2]  Smolinski MS, Hamburg MA, Lederberg J, editors. (2003) Microbial Threats to Health: Emergence, Detection, and Response. Washington D.C.: The Institute of Medicine. 367 p.
[3]  Infectious Diseases Society of America (2004) Bad Bugs, No Drugs. 35 p. A White Paper. Alexandria, VA.
[4]  Choffnes ER, Relman DA, Mack A (2010) for the Forum on Microbial Threats, Institute of Medicine of the National Academies. Antibiotic resistance: implications for global health and novel intervention strategies. Washington D.C.: The National Academies Press.
[5]  Spellberg B, Blaser M, Guidos R, Boucher HW, Bradley JS, et al. (2011) for the Infectious Diseases Society of America. Position Paper: Combating Antimicrobial Resistance. Clin Infect Dis 52(S5): S397–428.
[6]  Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, et al. (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51: 3471–3484.
[7]  Higgins PG, Dammhayn C, Hackel M, Seifert H (2010) Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 65: 233–238.
[8]  Doi Y, Husain S, Potoski BA, McCurry KR, Paterson DL (2009) Extensively drug-resistant Acinetobacter baumannii. Emerg Infect Dis 15: 980–982.
[9]  Rosenthal VD, Maki DG, Jamulitrat S, Medeiros EA, Todi SK, et al. (2010) International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003–2008, issued June 2009. Am J Infect Control 38: 95–104 e102.
[10]  Hoffmann MS, Eber MR, Laxminarayan R (2010) Increasing resistance of acinetobacter species to imipenem in United States hospitals, 1999–2006. Infect Control Hosp Epidemiol 31: 196–197.
[11]  Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, et al. (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29: 996–1011.
[12]  Lautenbach E, Synnestvedt M, Weiner MG, Bilker WB, Vo L, et al. (2009) Epidemiology and impact of imipenem resistance in Acinetobacter baumannii. Infect Control Hosp Epidemiol 30: 1186–1192.
[13]  Kallen AJ, Hidron AI, Patel J, Srinivasan A (2010) Multidrug Resistance among Gram-Negative Pathogens Causing Healthcare-Associated Infections Reported to the National Healthcare Safety Network, 2006–2008. Infect Control Hosp Epidemiol 31: 528–531.
[14]  Sunenshine RH, Wright MO, Maragakis LL, Harris AD, Song X, et al. (2007) Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis 13: 97–103.
[15]  Falagas ME, Rafailidis PI, Matthaiou DK, Virtzili S, Nikita D, et al. (2008) Pandrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii infections: characteristics and outcome in a series of 28 patients. Int J Antimicrob Agents 32: 450–454.
[16]  Gordon NC, Wareham DW (2009) A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. J Antimicrob Chemother 63: 775–780.
[17]  Munoz-Price LS, Zembower T, Penugonda S, Schreckenberger P, Lavin MA, et al. (2010) Clinical Outcomes of Carbapenem-Resistant Acinetobacter baumannii Bloodstream Infections: Study of a 2-State Monoclonal Outbreak. Infect Control Hosp Epidemiol 31: 1057–1062.
[18]  Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, et al. (2009) Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53: 3628–3634.
[19]  Park YK, Jung SI, Park KH, Cheong HS, Peck KR, et al. (2009) Independent emergence of colistin-resistant Acinetobacter spp. isolates from Korea. Diagn Microbiol Infect Dis 64: 43–51.
[20]  Livermore DM, Hill RL, Thomson H, Charlett A, Turton JF, et al. (2010) Antimicrobial treatment and clinical outcome for infections with carbapenem- and multiply-resistant Acinetobacter baumannii around London. Int J Antimicrob Agents 35: 19–24.
[21]  Beavers SF, Blossom DB, Wiemken TL, Kawaoka KY, Wong A, et al. (2009) Comparison of risk factors for recovery of Acinetobacter baumannii during outbreaks at two Kentucky hospitals, 2006. Public Health Rep 124: 868–874.
[22]  Caricato A, Montini L, Bello G, Michetti V, Maviglia R, et al. (2009) Risk factors and outcome of Acinetobacter baumanii infection in severe trauma patients. Intensive Care Med 35: 1964–1969.
[23]  Metan G, Sariguzel F, Sumerkan B (2009) Factors influencing survival in patients with multi-drug-resistant Acinetobacter bacteraemia. Eur J Intern Med 20: 540–544.
[24]  Furniss D, Gore S, Azadian B, Myers SR (2005) Acinetobacter infection is associated with acquired glucose intolerance in burn patients. J Burn Care Rehabil 26: 405–408.
[25]  D'Agata EM, Thayer V, Schaffner W (2000) An outbreak of Acinetobacter baumannii: the importance of cross-transmission. Infect Control Hosp Epidemiol 21: 588–591.
[26]  Tian GB, Adams-Haduch JM, Bogdanovich T, Pasculle AW, Quinn JP, et al. (2011) Identification of diverse OXA-40 group carbapenemases, including a novel variant, OXA-160, from Acinetobacter baumannii in Pennsylvania. Antimicrob Agents Chemother 55: 429–432.
[27]  Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H, et al. (2005) Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43: 4382–4390.
[28]  Spellberg B, Fu Y, Edwards JE Jr, Ibrahim AS (2005) Combination therapy with amphotericin B lipid complex and caspofungin acetate of disseminated zygomycosis in diabetic ketoacidotic mice. Antimicrob Agents Chemother 49: 830–832.
[29]  Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, et al. (2000) Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 267: 2871–2881.
[30]  Soares NC, Cabral MP, Parreira JR, Gayoso C, Barba MJ, et al. (2009) 2-DE analysis indicates that Acinetobacter baumannii displays a robust and versatile metabolism. Proteome Sci 7: 37.
[31]  Pitarch A, Pardo M, Jimenez A, Pla J, Gil C, et al. (1999) Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis 20: 1001–1010.
[32]  Pitarch A, Jimenez A, Nombela C, Gil C (2006) Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol Cell Proteomics 5: 79–96.
[33]  Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858.
[34]  Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, et al. (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93: 14440–14445.
[35]  Spellberg B, Ibrahim AS, Yeaman M, Lin L, Fu Y, et al. (2008) The anti-fungal rAls3p-N vaccine protects mice against the bacterium Staphylococcus aureus. Infect Immun 76: 4574–4580.
[36]  Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, et al. (2010) Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis 201: 1718–1728.
[37]  Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, et al. (2006) Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 194: 256–260.
[38]  Spellberg BJ, Ibrahim AS, Avenissian V, Filler SG, Myers CL, et al. (2005) The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice. Infect Immun 73: 6191–6193.
[39]  Joly-Guillou ML, Wolff M, Pocidalo JJ, Walker F, Carbon C (1997) Use of a new mouse model of Acinetobacter baumannii pneumonia to evaluate the postantibiotic effect of imipenem. Antimicrob Agents Chemother 41: 345–351.
[40]  van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, et al. (2007) Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect Immun 75: 5597–5608.
[41]  Song JY, Cheong HJ, Lee J, Sung AK, Kim WJ (2009) Efficacy of monotherapy and combined antibiotic therapy for carbapenem-resistant Acinetobacter baumannii pneumonia in an immunosuppressed mouse model. Int J Antimicrob Agents 33: 33–39.
[42]  Chiang DH, Wang CC, Kuo HY, Chen HP, Chen TL, et al. (2008) Risk factors for mortality in patients with Acinetobacter baumannii bloodstream infection with genotypic species identification. J Microbiol Immunol Infect 41: 397–402.
[43]  Dizbay M, Tunccan OG, Sezer BE, Hizel K (2010) Nosocomial imipenem-resistant Acinetobacter baumannii infections: Epidemiology and risk factors. Scand J Infect Dis.
[44]  Gomez J, Simarro E, Banos V, Requena L, Ruiz J, et al. (1999) Six-year prospective study of risk and prognostic factors in patients with nosocomial sepsis caused by Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 18: 358–361.
[45]  Jang TN, Lee SH, Huang CH, Lee CL, Chen WY (2009) Risk factors and impact of nosocomial Acinetobacter baumannii bloodstream infections in the adult intensive care unit: a case-control study. J Hosp Infect 73: 143–150.
[46]  Alsultan AA, Hamouda A, Evans BA, Amyes SG (2009) Acinetobacter baumannii: emergence of four strains with novel bla(OXA-51-like) genes in patients with diabetes mellitus. J Chemother 21: 290–295.
[47]  Choi CH, Hyun SH, Lee JY, Lee JS, Lee YS, et al. (2008) Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol 10: 309–319.
[48]  King LB, Swiatlo E, Swiatlo A, McDaniel LS (2009) Serum resistance and biofilm formation in clinical isolates of Acinetobacter baumannii. FEMS Immunol Med Microbiol 55: 414–421.
[49]  Kim SW, Choi CH, Moon DC, Jin JS, Lee JH, et al. (2009) Serum resistance of Acinetobacter baumannii through the binding of factor H to outer membrane proteins. FEMS Microbiol Lett 301: 224–231.
[50]  Russo TA, Beanan JM, Olson R, MacDonald U, Luke NR, et al. (2008) Rat pneumonia and soft-tissue infection models for the study of Acinetobacter baumannii biology. Infect Immun 76: 3577–3586.
[51]  McConnell MJ, Pachon J (2010) Expression, purification, and refolding of biologically active Acinetobacter baumannii OmpA from Escherichia coli inclusion bodies. Protein Expr Purif 77: 98–103.
[52]  McConnell MJ, Pachon J (2010) Active and passive immunization against Acinetobacter baumannii using an inactivated whole cell vaccine. Vaccine 29: 1–5.
[53]  McConnell MJ, Dominguez-Herrera J, Smani Y, Lopez-Rojas R, Docobo-Perez F, et al. (2010) Vaccination with outer membrane complexes elicits rapid protective immunity to multidrug-resistant Acinetobacter baumannii. Infect Immun 79: 518–526.
[54]  Piechaud M, Second L (1951) [Studies of 26 strains of Moraxella Iwoffi]. Ann Inst Pasteur (Paris) 80: 97–99.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133