全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Genetically-Engineered Pig-to-Baboon Liver Xenotransplantation: Histopathology of Xenografts and Native Organs

DOI: 10.1371/journal.pone.0029720

Full-Text   Cite this paper   Add to My Lib

Abstract:

Orthotopic liver transplantation was carried out in baboons using wild-type (WT, n = 1) or genetically-engineered pigs (α1,3-galactosyltransferase gene-knockout, GTKO), n = 1; GTKO pigs transgenic for human CD46, n = 7) and a clinically-acceptable immunosuppressive regimen. Biopsies were obtained from the WT pig liver pre-Tx and at 30 min, 1, 2, 3, 4 and 5 h post-transplantation. Biopsies of genetically-engineered livers were obtained pre-Tx, 2 h after reperfusion and at necropsy (4–7 days after transplantation). Tissues were examined by light, confocal, and electron microscopy. All major native organs were also examined. The WT pig liver underwent hyperacute rejection. After genetically-engineered pig liver transplantation, hyperacute rejection did not occur. Survival was limited to 4–7 days due to repeated spontaneous bleeding in the liver and native organs (as a result of profound thrombocytopenia) which necessitated euthanasia. At 2 h, graft histology was largely normal. At necropsy, genetically-engineered pig livers showed hemorrhagic necrosis, platelet aggregation, platelet-fibrin thrombi, monocyte/macrophage margination mainly in liver sinusoids, and vascular endothelial cell hypertrophy, confirmed by confocal and electron microscopy. Immunohistochemistry showed minimal deposition of IgM, and almost absence of IgG, C3, C4d, C5b-9, and of a cellular infiltrate, suggesting that neither antibody- nor cell-mediated rejection played a major role.

References

[1]  Ekser B, Gridelli B, Tector AJ, Cooper DKC (2009) Pig liver xenotransplantation as a bridge to allotransplantation: which patients might benefit? Transplantation 88: 1041–1049.
[2]  Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, et al. (2003) Production of α1,3-galactosyltransferase-deficient pigs. Science 299: 411–414.
[3]  Cozzi E, White DJ (1995) The generation of transgenic pigs as potential organ donors for humans. Nat Med 1: 964–966.
[4]  Loveland BE, Milland J, Kyriakou P, Thorley BR, Christiansen D, et al. (2004) Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation 11: 171–183.
[5]  Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, et al. (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11: 32–34.
[6]  Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, et al. (2005) Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11: 29–31.
[7]  Shimizu A, Hisashi Y, Kuwaki K, Tseng Y-L, Dor FJMF, et al. (2008) Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from α1,3-galactosyltransferase gene-knockout pigs in baboons. Am J Pathol 172: 1471–1481.
[8]  Ezzelarab M, Garcia B, Azimzadeh A, Sun H, Lin CC, et al. (2009) The innate immune response and activation of coagulation in alpha1,3-galactosyltransferase gene-knockout xenograft recipients. Transplantation 87: 805–812.
[9]  Mohiuddin MM, Corcoran PC, Singh AK, Azimzadeh AM, Hoyt RF, et al. (2010) Over six month survival of cardiac xenograft is achievable but heterotopic placement of the graft may limit consistent prolonged survival. (Abstract TTS-1383). Transplantation 90(suppl): 325.
[10]  Hara H, Gridelli B, Lin YJ, Marcos A, Cooper DKC (2008) Liver xenografts for the treatment of acute liver failure: clinical and experimental experience and remaining immunologic barriers. Liver Transpl 14: 425–434.
[11]  Ekser B, Gridelli B, Veroux M, Cooper DKC (2011) Clinical pig liver xenotransplantation: how far do we have to go? Xenotransplantation 18: 158–167.
[12]  Ramirez P, Chavez R, Majado M, Munitiz V, Mu?oz A, et al. (2000) Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation 70: 989–998.
[13]  Ramirez P, Montoya MJ, Ríos A, García Palenciano C, et al. (2005) Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc 37: 4103–4106.
[14]  Ekser B, Long C, Echeverri GJ, Hara H, Ezzelarab M, et al. (2010) Impact of thrombocytopenia on survival of baboons with genetically-modified pig liver transplants: clinical relevance. Am J Transplant 10: 273–285.
[15]  Wight DGD (1991) Histopathology of liver xenograft rejection. In: Cooper DKC, Kemp E, Reemtsma K, White DJG, editors. Xenotransplantation. pp. 253–272. Heidelberg, Germany, Springer 1991.
[16]  Calne RY, White HJO, Herbertson BM, Millard PR, Davis DR, et al. (1968) Pig-to-baboon liver xenografts. Lancet 1(7553): 1176–1178.
[17]  Donato MF, Arosio E, Berti E, Gatti S, Piazzini A, et al. (1993) Immunopathology of liver allografts and xenografts in nonhuman primates: Transplant Proc 25: 850–855.
[18]  Powelson J, Cosimi AB, Austen W, Bailen M, Colvin R, et al. (1994) Porcine-to-primate orthotopic liver transplantation. Transplant Proc 26: 1353–1354.
[19]  Luo T, Kosanke S, Mieles L, Kobayashi T, Li SF, et al. (1998) Comparative histology of hepatic allografts and xenografts in the nonhuman primate. Xenotransplantation 5: 197–206.
[20]  Balamurugan AN, He J, Guo F, Stolz DB, Bertera S, et al. (2005) Harmful delayed effects of exogenous isolation enzymes on isolated human islets: relevance to clinical transplantation. Am J Transplant 5: 2671–2681.
[21]  Wack KE, Ross MA, Zegarra V, Sysko LR, Watkins SC, et al. (2001) Sinusoidal ultrastructure evaluated during the revascularization of regenerating rat liver. Hepatology 33: 363–378.
[22]  Burlak C, Paris LL, Chihara RK, Sidner RA, Reyes LM, et al. (2010) The fate of human platelets perfused through the pig liver: implications for xenotransplantation. Xenotransplantation 17: 350–361.
[23]  Peng Q, Yeh H, Enjoji K, Machaidze Z, Wei L, et al. (2011) Integrin-dependent baboon platelet activation and phagocytosis by porcine hepatocytes and endothelial cells. (Abstract-394). Xenotransplantation 18: 287–288.
[24]  Hara H, Campanile N, Tai HC, Long C, Ekser B, et al. (2010) An in vitro model of pig liver xenotransplantation–pig complement is associated with reduced lysis of wild-type and genetically modified pig cells. Xenotransplantation 17: 370–378.
[25]  Shiratori Y, Tananka M, Kawase T, Shiina S, Komatsu Y, et al. (1993) Quantification of sinusoidal cell function in vivo. Semin Liver Dis 13: 39–49.
[26]  Elvevold K, Smedsrod B, Martinez I (2008) The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity: Am J Physiol Gastrointest Liver Physiol 294: G391–400.
[27]  Rumjantseva V, Grewal PK, Wandall HH, Josefsson EC, S?rensen AL, et al. (2009) Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat Med 15: 1273–1280.
[28]  Yang YG (2010) CD47 in xenograft rejection and tolerance induction. Xenotransplantation 17: 267–273.
[29]  Hara H, Long C, Lin YJ, Tai HC, Ezzelarab M, et al. (2008) In vitro investigation of pig cells for resistance to human antibody-mediated rejection. Transpl Int 21: 1163–1174.
[30]  Weatherall D (2006) pp. 1–153. The use of non-human primates in research - The Weatherall Report.
[31]  Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol 8: e1000412.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133