全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
物理学报  2012 

Electronic theory of the mechanism of corrosion of Pb-Mg-Al alloy
Pb-Mg-Al合金腐蚀机理的电子理论研究

Keywords: Pb-Mg-Al alloy,first-principle,LDOS,mechanism of the electrochemical corrosion
Pb-Mg-Al合金
,第一性原理,局域态密度,腐蚀机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cohesive energies, Fermi energies and local density of states (LDOS) are calculated by the first-principles based on pseudopotential plane wave method in this paper to investigate the physical nature of corrosion of Pb-Mg-Al alloy. The mechanism of electrochemical corrosion is analyzed according to the calculated electronic structure parameters. The results show that the stable phase in Pb-Mg-Al alloy is Mg17Al12>Mg2Pb>Mg. The Fermi energy (Ef) values of these phases with Ef(Mg)>Ef(Mg2Pb)>Ef (Mg17Al12) indicate that Mg is most likely to lose electrons while Mg17Al12 is difficult. LDOS result reveals that Mg and Mg2Pb phases are unstable compared with Mg17Al12 in the same external conditions, they are more likely to lose electrons and easier to corrod. The difference in Fermi energy between different phases in Pb-Mg-Al alloy forms the electrodynamic force of the electrochemical corrosion, which leads electrons to flow from the Mg and Mg2Pb phases with higher Fermi energy to Mg17Al12 phase with lower Fermi energy, further to corrode in Pb-Mg-Al alloy.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133