SNCA and MAPT genes and environmental factors are important risk factors of Parkinson's disease [PD], the second-most common neurodegenerative disease. The agrichemicals maneb and paraquat selectively target dopaminergic neurons, leading to parkinsonism, through ill-defined mechanisms. In the current studies we have analyzed the ability of maneb and paraquat, separately and together, to induce synucleinopathy and tauopathy in wild type mice. Maneb was ineffective in increasing α-synuclein [α-Syn] or p-Tau levels. By contrast, paraquat treatment of mice resulted in robust accumulation of α-Syn and hyperphosphorylation of Tau in striata, through activation of p-GSK-3β, a major Tau kinase. Co-treatment with maneb did not enhance the effects of paraquat. Increased hyperacetylation of α-tubulin was observed in paraquat-treated mice, suggesting cytoskeleton remodeling. Paraquat, but not maneb, inhibited soluble proteasomal activity on a peptide substrate but this was not associated with a decreased expression of 26S proteasome subunits. Both paraquat and maneb treatments increased levels of the autophagy inhibitor, mammalian target of rapamycin, mTOR, suggesting impaired axonal autophagy, despite increases in certain autophagic proteins, such as beclin 1 and Agt12. Autophagic flux was also impaired, as ratios of LC3 II to LC3 I were reduced in treated animals. Increased mTOR was also observed in postmortem human PD striata, where there was a reduction in the LC3 II to LC3 I ratio. Heat shock proteins were either increased or unchanged upon paraquat-treatment suggesting that chaperone-mediated autophagy is not hampered by the agrichemicals. These studies provide novel insight into the mechanisms of action of these agrichemicals, which indicate that paraquat is much more toxic than maneb, via its inhibitory effects on proteasomes and autophagy, which lead to accumulation of α-Syn and p-Tau.
References
[1]
Tanner CM, Chen B, Wang W, Peng M, Liu Z, et al. (1989) Environmental factors and Parkinson's disease: a case-control study in China. Neurology 39(5): 660–4.
[2]
Baldereschi M, Di Carlo A, Vanni P, Ghetti A, Carbonin P, et al. (2003) Lifestyle-related risk factors for Parkinson's disease: a population-based study. Acta Neurol Scand 108(4): 239–44.
[3]
Uversky VN (2004) Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318(1): 225–41.
[4]
Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease. Free Radic Biol Med 44(11): 1873–86.
[5]
Hisahara S, Shimohama S (2010) Toxin induced and genetic animal models of Parkinson's disease. Parkinsons Dis 2011: 951709.
[6]
McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, et al. (2002) Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10(2): 119–27.
[7]
Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ, et al. (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823(1–2): 1–10.
[8]
Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, et al. (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3): 1641–4.
[9]
Meco G, Bonifati V, Vanacore N, Fabrizio E (1994) Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scand J Work Environ Health 20(4): 301–5.
[10]
Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci 20(24): 9207–14.
[11]
Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, et al. (2003) Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci 18(3): 589–600.
[12]
Fei Q, Ethell DW (2008) Maneb potentiates paraquat neurotoxicity by inducing key Bcl-2 family members. J Neurochem 105(6): 2091–7.
[13]
Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169(8): 919–26.
[14]
Yang W, Chen L, Ding Y, Zhuang X, Kang UJ (2007) Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice. Hum Mol Genet 16(23): 2900–10.
[15]
Ding Q, Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77(4): 1010–7.
[16]
Zhou Y, Shie FS, Piccardo P, Montine TJ, Zhang J (2004) Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson's disease. Neuroscience 128(2): 281–91.
[17]
Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41(12): 1308–12.
[18]
Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, et al. (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74(2): 97–109.
[19]
Mata IF, Yearout D, Alvarez V, Coto E, de Mena L, et al. (2011) Replication of MAPT and SNCA, but not PARK16-18, as susceptibility genes for Parkinson's disease. Mov Disord 26(5): 819–23.
[20]
Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, et al. (2011) Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377(9766): 641–9.
[21]
Ahn TB, Kim SY, Kim JY, Park SS, Lee DS, et al. (2008) alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 70(1): 43–9.
[22]
Duka T, Rusnak M, Drolet RE, Duka V, Wersinger C, et al. (2006) Alpha-synuclein induces hyperphosphorylation of Tau in the MPTP model of parkinsonism. FASEB J 20: 2302–12.
[23]
Kozikowski AP, Gaisina IN, Petukhov PA, Sridhar J, King LT, et al. (2006) Highly Potent and Specific GSK-3beta Inhibitors That Block Tau Phosphorylation. Chem Med Chem 1: 256–66.
[24]
Duka T, Duka V, Joyce JN, Sidhu (2009) Alpha-Synuclein contributes to GSK-3beta-catalyzed Tau phosphorylation in Parkinson's disease models. A FASEB J 23(9): 2820–30. PMID: 19369384 [PubMed - indexed for MEDLINE]Related articles PMCID: PMC2796901.
[25]
Wills J, Jones J, Haggerty T, Duka V, Joyce JN, et al. (2010) Elevated taupathy and alpha-synuclein pathology in postmortem Parkinson's disease brains with and without dementia. Exp Neurol 2010 Sep;225(1): 210–8. Epub 2010. PMCID: PMC2922478.
[26]
Haggerty T, Credle J, Rodriguez O, Wills J, Duka V, et al. (2011) Eur. J. Neurosci. Hyperphosphorylated Tau in an α-synuclein overexpressing transgenic model of Parkinson's disease. Eur J Neurosci. In Press.
[27]
Wills J, Credle J, Haggerty T, Lee J-H, Oaks AW, et al. (2011) Tauopathic changes in the striata of A53T α-synuclein mutant mouse model of Parkinson's disease. Plos One. In Press.
[28]
Kachroo A, Irizarry MC, Schwarzschild MA (2010) Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 223(2): 657–61.
[29]
Hashimoto M, Bar-On P, Ho G, Takenouchi T, Rockenstein E, et al. (2004) Beta-synuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson's disease. J Biol Chem 279(22): 23622–9.
[30]
Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15(3): 112–9.
[31]
Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res Dec;7(8): 656–64. Review.
[32]
Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33: 95–130.
[33]
Alonso AD, Di Clerico J, Li B, Corbo CP, Alaniz ME, et al. (2010) Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem 285(40): 30851–60.
[34]
Perez M, Santa-Maria I, Gomez de Barreda E, Zhu X, Cuadros R, et al. (2009) Tau—an inhibitor of deacetylase HDAC6 function. J Neurochem 109(6): 1756–66.
[35]
Chen S, Owens GC, Makarenkova H, Edelman DB (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One May 26;5(5): e10848.
[36]
Yue Z, Friedman L, Komatsu M, Tanaka K (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta Sep;1793(9): 1496–507. Epub 2009 Feb 6.
[37]
Xilouri M, Stefanis L (2011) Autophagic pathways in Parkinson disease and related disorders. Expert Rev Mol Med Mar 21;13: e8.
[38]
Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci Jul;13(7): 805–11. Review.
[39]
García-Arencibia M, Hochfeld WE, Toh PP, Rubinsztein DC (2010) Autophagy, a guardian against neurodegeneration. Semin Cell Dev Biol Sep;21(7): 691–8. Epub 2010 Feb 24. Review.
[40]
McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol Jan;179(1): 38–46.
[41]
Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33: 109–122.
[42]
González-Polo RA, Niso-Santano M, Ortíz-Ortíz MA, Gómez-Martín A, Morán JM, et al. (2007) Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol Sci Jun;97(2): 448–58. Epub 2007 Mar 6.
[43]
K?chl R, Hu XW, Chan EY, Tooze SA (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7(2): 129–45.
[44]
Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121(2): 305–15.
[45]
Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem Apr 30;285(18): 13621–9.
[46]
Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, et al. (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67(12): 1464–72.
[47]
Wu G, Wang X, Feng X, Zhang A, Li J, et al. (2011) Altered expression of autophagic genes in the peripheral leukocytes of patients with sporadic Parkinson's disease. Brain Res Jun 7;1394: 105–11.
[48]
H?glinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, et al. (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95(4): 930–9.
[49]
Chaves RS, Melo TQ, Martins SA, Ferrari MF (2010) Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci 11: 144.