全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Genetic Interactions between Chromosomes 11 and 18 Contribute to Airway Hyperresponsiveness in Mice

DOI: 10.1371/journal.pone.0029579

Full-Text   Cite this paper   Add to My Lib

Abstract:

We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks - Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans.

References

[1]  Woolcock AJ (1997) Definitions and clinical classification. In: Barnes PJ, Leff AR, Grunstein MM, Woolcock AJ, editors. Asthma. Philadelphia: Lippincott-Raven Publishers. pp. 27–34.
[2]  Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793.
[3]  Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, et al. (2005) Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 76: 349–357.
[4]  Weiss LA, Lester LA, Gern JE, Wolf RL, Parry R, et al. (2005) Variation in ITGB3 is associated with asthma and sensitization to mold allergen in four populations. Am J Respir Crit Care Med 172: 67–73.
[5]  Ober C, Tan Z, Sun Y, Possick JD, Pan L, et al. (2008) Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med 358: 1682–1691.
[6]  Tossa P, Paris C, Zmirou-Navier D, Demange V, Acouetey DS, et al. (2010) Increase of Exhaled Nitric Oxide is Associated with Bronchial Hyperresponsiveness among Apprentices. Am J Respir Crit Care Med 182: 738–744.
[7]  Buchele G, Genuneit J, Weinmayr G, Bjorksten B, Gehring U, et al. (2010) International variations in bronchial responsiveness in children: Findings from ISAAC phase two. Pediatr Pulmonol 45: 796–806.
[8]  Hoffjan S, Ober C (2002) Present status on the genetic studies of asthma. Current Opinion in Immunology 14: 709–717.
[9]  Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, et al. (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8: 58–69.
[10]  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
[11]  Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
[12]  Levitt RC, Mitzner W (1988) Expression of airway hyperreactivity to acetylcholine as a simple autosomal recessive trait in mice. FASEB J 2: 2605–2608.
[13]  Levitt RC, Mitzner W (1989) Autosomal recessive inheritance of airway hyperreactivity to 5-hydroxytryptamine. J Appl Physiol 67: 1125–1132.
[14]  De Sanctis GT, Merchant M, Beier DR, Dredge RD, Grobholz JK, et al. (1995) Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 11: 150–154.
[15]  Ewart SL, Mitzner W, DiSilvestre DA, Meyers DA, Levitt RC (1996) Airway hyperresponsiveness to acetylcholine: segregation analysis and evidence for linkage to murine chromosome 6. Am J Respir Cell Mol Biol 14: 487–495.
[16]  De Sanctis GT, Singer JB, Jiao A, Yandava CN, Lee YH, et al. (1999) Quantitative trait locus mapping of airway responsiveness to chromosomes 6 and 7 in inbred mice. Am J Physiol 277: L1118–L1123.
[17]  Ackerman KG, Huang H, Grasemann H, Puma C, Singer JB, et al. (2005) Interacting genetic loci cause airway hyperresponsiveness. Physiol Genomics 21: 105–111.
[18]  Chen B, Liu G, Shardonofsky F, Dowell M, Lakser O, et al. (2006) Tidal breathing pattern differentially antagonizes bronchoconstriction in C57BL/6J vs. A/J mice. J Appl Physiol 101: 249–255.
[19]  Moran JL, Bolton AD, Tran PV, Brown A, Dwyer ND, et al. (2006) Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Res 16: 436–440.
[20]  Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890.
[21]  Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T (2005) Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132: 797–803.
[22]  Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. (2009) STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37: D412–416.
[23]  Chen J, Sam L, Huang Y, Lee Y, Li J, et al. (2010) Protein interaction network underpins concordant prognosis among heterogeneous breast cancer signatures. J Biomed Inform 43: 385–396.
[24]  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504.
[25]  Leme AS, Berndt A, Williams LK, Tsaih SW, Szatkiewicz JP, et al. (2010) A survey of airway responsiveness in 36 inbred mouse strains facilitates gene mapping studies and identification of quantitative trait loci. Mol Genet Genomics 283: 317–326.
[26]  Camateros P, Marino R, Fortin A, Martin JG, Skamene E, et al. (2010) Identification of novel chromosomal regions associated with airway hyperresponsiveness in recombinant congenic strains of mice. Mamm Genome 21: 28–38.
[27]  Gerthoffer WT, Gunst SJ (2001) Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol 91: 963–972.
[28]  Gunst SJ, Tang DD (2000) The contractile apparatus and mechanical properties of airway smooth muscle. Eur Respir J 15: 600–616.
[29]  Mehta D, Gunst SJ (1999) Actin polymerization stimulated by contractile activation regulates force development in canine tracheal smooth muscle. J Physiol 519 Pt 3: 829–840.
[30]  Dowell ML, Lakser OJ, Gerthoffer WT, Fredberg JJ, Stelmack GL, et al. (2005) Latrunculin B increases force fluctuation-induced relengthening of ACh-contracted, isotonically shortened canine tracheal smooth muscle. J Appl Physiol 98: 489–497.
[31]  Dowell ML, Lavoie TL, Lakser OJ, Dulin NO, Fredberg JJ, et al. (2010) MEK modulates force fluctuation-induced relengthening of canine tracheal smooth muscle. Eur Respir J 36: 630–637.
[32]  Chiba Y, Misawa M (2004) The role of RhoA-mediated Ca(2+) sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness. J Smooth Muscle Res 40: 155–167.
[33]  Palmeri S, Tarugi P, Sicurelli F, Buccoliero R, Malandrini A, et al. (2005) Lung involvement in Niemann-Pick disease type C1: improvement with bronchoalveolar lavage. Neurol Sci 26: 171–173.
[34]  Kovesi TA, Lee J, Shuckett B, Clarke JT, Callahon JW, et al. (1996) Pulmonary infiltration in Niemann-Pick disease type C. J Inherit Metab Dis 19: 792–793.
[35]  Nicholson AG, Florio R, Hansell DM, Bois RM, Wells AU, et al. (2006) Pulmonary involvement by Niemann-Pick disease. A report of six cases. Histopathology 48: 596–603.
[36]  Davis HR Jr, Basso F, Hoos LM, Tetzloff G, Lally SM, et al. (2008) Cholesterol homeostasis by the intestine: lessons from Niemann-Pick C1 Like 1 [NPC1L1). Atheroscler Suppl 9: 77–81.
[37]  Davis HR Jr, Hoos LM, Tetzloff G, Maguire M, Zhu LJ, et al. (2007) Deficiency of Niemann-Pick C1 Like 1 prevents atherosclerosis in ApoE?/? mice. Arterioscler Thromb Vasc Biol 27: 841–849.
[38]  Iyer SP, Yao X, Crona JH, Hoos LM, Tetzloff G, et al. (2005) Characterization of the putative native and recombinant rat sterol transporter Niemann-Pick C1 Like 1 (NPC1L1) protein. Biochim Biophys Acta 1722: 282–292.
[39]  Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, et al. (2004) Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279: 33586–33592.
[40]  Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, et al. (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303: 1201–1204.
[41]  Davis HR Jr, Compton DS, Hoos L, Tetzloff G (2001) Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in ApoE knockout mice. Arterioscler Thromb Vasc Biol 21: 2032–2038.
[42]  Yao X, Dai C, Fredriksson K, Dagur PK, McCoy JP, et al. (2011) 5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma. J Immunol 186: 576–583.
[43]  Wang W, Xu H, Shi Y, Nandedkar S, Zhang H, et al. (2010) Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung. J Lipid Res 51: 2560–2570.
[44]  Otera H, Ishida T, Nishiuma T, Kobayashi K, Kotani Y, et al. (2009) Targeted inactivation of endothelial lipase attenuates lung allergic inflammation through raising plasma HDL level and inhibiting eosinophil infiltration. Am J Physiol Lung Cell Mol Physiol 296: L594–602.
[45]  Al-Shawwa B, Al-Huniti N, Titus G, Abu-Hasan M (2006) Hypercholesterolemia is a potential risk factor for asthma. J Asthma 43: 231–233.
[46]  Yeh YF, Huang SL (2004) Enhancing effect of dietary cholesterol and inhibitory effect of pravastatin on allergic pulmonary inflammation. J Biomed Sci 11: 599–606.
[47]  Yao X, Fredriksson K, Yu ZX, Xu X, Raghavachari N, et al. (2010) Apolipoprotein E negatively regulates house dust mite-induced asthma via a low-density lipoprotein receptor-mediated pathway. Am J Respir Crit Care Med 182: 1228–1238.
[48]  Sommer B, Montano LM, Carbajal V, Flores-Soto E, Ortega A, et al. (2009) Extraction of membrane cholesterol disrupts caveolae and impairs serotonergic (5-HT2A) and histaminergic (H1) responses in bovine airway smooth muscle: role of Rho-kinase. Can J Physiol Pharmacol 87: 180–195.
[49]  Schlenz H, Kummer W, Jositsch G, Wess J, Krasteva GT (2009) Muscarinic receptor-mediated bronchoconstriction is coupled to caveolae in murine airways. Am J Physiol Lung Cell Mol Physiol 298: L626–L636.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133