全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

HSPG-Deficient Zebrafish Uncovers Dental Aspect of Multiple Osteochondromas

DOI: 10.1371/journal.pone.0029734

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2?/? fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2?/? fish. Histological analysis reveals that ext2?/? fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2?/? fish have a single tooth at the end of the 5th pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2?/? teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2+/? adults. The tooth morphology in ext2?/? was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems.

References

[1]  Bovée JVMG, Hogendoorn PCW (2002) Multiple osteochondromas. In: Fletcher CDM, Unni KK, Mertens F, editors. World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. Lyon (France): IARC Press. pp. 360–362.
[2]  Bovée JVMG (2008) Multiple osteochondromas. Orphanet J Rare Dis 3: 3.
[3]  Darilek S, Wicklund C, Novy D, Scott A, Gambello M, et al. (2005) Hereditary multiple exostosis and pain. J Pediatr Orthop 25: 369–376.
[4]  Hong L, Yamagata T, Mori M, Momoi MY (2002) Association of autism in two patients with hereditary multiple exostoses caused by novel deletion mutations of EXT1. Journal of Human Genetics 47: 262–265.
[5]  Wicklund LC, Pauli RM, Johnston D, Hecht JT (1995) Natural history study of hereditary multiple exostoses. Am J Med Genet 55: 43–46.
[6]  Hosalkar H, Greenberg J, Gaugler RL, Garg S, Dormans JP (2007) Abnormal scarring with keloid formation after osteochondroma excision in children with multiple hereditary exostoses. J Pediatr Orthop 27: 333–337.
[7]  Clément A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, et al. (2008) Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 4: e1000136.
[8]  Lee J-S, von der HS, Rusch MA, Stringer SE, Stickney HL, et al. (2004) Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44: 947–960.
[9]  Bai XM, Van der Schueren B, Cassiman JJ, Van den Berghe H, David G (1994) Differential expression of multiple cell-surface heparan sulfate proteoglycans during embryonic tooth development. J Histochem Cytochem 42: 1043–1054.
[10]  Landau H, Miethke RR, Entrup W (1988) Dental and orthodontics findings in patients with mucopolysaccharidosis. Fortschr Kieferorthop 49: 132–143.
[11]  Kü?ükesmen C, Ozen B, Ak?am M (2007) Multiple hereditary osteochondromatosis: a case report. European Journal of Dentistry 1: 183–187.
[12]  Borday-Birraux V, Van der Heyden C, Debiais-Thibaud M, Verreijdt L, Stock DW, et al. (2006) Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications. Evol Dev 8: 130–141.
[13]  Huysseune A, Van der Heyden C, Sire JY (1998) Early development of the zebrafish (Danio rerio) pharyngeal dentition (Teleostei, Cyprinidae). Anat Embryol (Berl) 198: 289–305.
[14]  Ablooglu AJ, Kang J, Handin RI, Traver D, Shattil SJ (2007) The zebrafish vitronectin receptor: characterization of integrin αV and β3 expression patterns in early vertebrate development. Dev Dyn 236: 2268–2276.
[15]  Jackman WR, Draper BW, Stock DW (2004) Fgf signaling is required for zebrafish tooth development. Dev Biol 274: 139–157.
[16]  Yelick PC, Schilling TF (2002) Molecular dissection of craniofacial development using zebrafish. Crit Rev Oral Biol Med 13: 308–322.
[17]  Bovee JVMG, Hogendoorn PCW, Wunder JS, Alman BA (2010) Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 10: 481–488.
[18]  Neues F, Arnold WH, Fischer J, Beckmann F, Gaengler P, et al. (2006) The skeleton and pharyngeal teeth of zebrafish (Danio rerio) as a model of biomineralization in vertebrates. Materialwissenschaft und Werkstofftechnik 37: 426–431.
[19]  Sire JY, Davit-Beal T, Delgado S, Van der Heyden C, Huysseune A (2002) First-generation teeth in nonmammalian lineages: evidence for a conserved ancestral character? Microsc Res Tech 59: 408–434.
[20]  Schilling TF, Piotrowski T, Grandel H, Brand M, Heisenberg CP, et al. (1996) Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123: 329–344.
[21]  Reijnders CM, Waaijer CJ, Hamilton A, Buddingh' EP, Dijkstra SP, et al. (2010) No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. Am J Pathol 177: 1946–1957.
[22]  Zuntini M, Pedrini E, Parra A, Sgariglia F, Gentile FV, et al. (2010) Genetic models of osteochondroma onset and neoplastic progression: evidence for mechanisms alternative to EXT genes inactivation. Oncogene 29: 3827–3834.
[23]  Hameetman L, Szuhai K, Yavas A, Knijnenburg J, van Duin M, et al. (2007) The Role of EXT1 in non hereditary osteochondroma:identification of homozygous deletions. J Natl Cancer Inst 99: 396–406.
[24]  Jones KB, Piombo V, Searby C, Kurriger G, Yang B, et al. (2010) A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A 107: 2054–2059.
[25]  Koziel L, Kunath M, Kelly OG, Vortkamp A (2004) Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 6: 801–813.
[26]  Matsumoto K, Irie F, Mackem S, Yamaguchi Y (2010) A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci U S A 107: 10932–10937.
[27]  Matsumoto Y, Matsumoto K, Irie F, Fukushi JI, Stallcup WB, et al. (2010) Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of BMP signaling and severe skeletal defects. J Biol Chem 18: 19227–19234.
[28]  Zak BM, Schuksz M, Koyama E, Mundy C, Wells DE, et al. (2011) Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones. Bone 48: 979–987.
[29]  Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, et al. (2011) Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 351: 70–81.
[30]  Yasuda T, Mundy C, Kinumatsu T, Shibukawa Y, Shibutani T, et al. (2010) Sulfotransferase Ndst1 is needed for mandibular and TMJ development. J Dent Res 89: 1111–1116.
[31]  Nüsslein-Volhard C, Dahm R (2002) Zebrafish: A Practical Approach. Oxford: Oxford University Press.
[32]  Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310.
[33]  Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3: 59–69.
[34]  Stock DW, Jackman WR, Trapani J (2006) Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development 133: 3127–3137.
[35]  Li N, Felber K, Elks P, Croucher P, Roehl HH (2009) Tracking gene expression during zebrafish osteoblast differentiation. Dev Dyn 238: 459–466.
[36]  Norton WH, Ledin J, Grandel H, Neumann CJ (2005) HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development 132: 4963–4973.
[37]  Grandel H, Draper BW, Schulte-Merker S (2000) dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. Development 127: 4169–4178.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133