|
物理学报 2013
Improved discrete-time model for a digital controlled single-phase full-bridge voltage inverter
|
Abstract:
An improved discrete-time model for a digital controlled single-phase full-bridge voltage inverter is proposed in this paper. Based on state-space averaging in every switching cycle, the improved discrete-time model combines the advantages of the average model and the traditional discrete-time model, which can accurately analyze the digital control delay and sample-and-hold process inherently in digital controlled system. Consequently, under the accuracy premise, the improved discrete-time model can effectively simplify the traditional discrete-time modeling. As an example, an LC filter capacitor-voltage and inductor-current feed-back plus voltage-reference feed-forward control algorithm is analyzed based on the improved discrete-time model. The stability boundary and oscillation frequency are accurately predicted. Finally, theoretical results are verified by simulations and experiments.