全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
物理学报  2012 

Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma
激光诱导等离子体加工石英微通道机理研究

Keywords: plasma,micro channels,avalanche ionization,laser supported detonation wave
等离子体
,微通道,雪崩电离,激光支持的爆轰波

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Q-switched Nd: YAG laser was used to fabricate micro channels in the fused silica substrate by laser-induced plasma. The micro channels were observed with fluorescence microscope, no thermal cracks around the channels and the depth of the channels is up to 4 mm. There are coagulation layers around the inner surface. We studied the ionization mechanism of optical breakdown in solids by nanosecond laser pulses. For the 1064 nm laser, as the intensity of nanosecond pulse is not enough large, plasma formation in optical breakdown is the result of an electron avalanche process. We got the plasma formation model using the breakdown threshold of avalanche ionization and calculated the range of laser plasma based on the model. The theoretical analysis based on the model is shown to be mainly agreement with the experimental observations. The laser-supported detonation wave (LSDW) based on the principle of hydrodynamics was analyzed as well and calculated the characteristic parameters of plasma including the plasma temperature, pressure and velocity. The characteristics of micro channels were analyzed through the parameters. When the plasma passed, the melting quartz solidified with the effect of LSDW and produced the coagulation layers. The ablation of the high temperature and pressure plasma lead to a micro channel of high quality with a relatively smooth internal surface and no thermal cracks.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133