全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

In vivo Expansion of Na?ve CD4+CD25high FOXP3+ Regulatory T Cells in Patients with Colorectal Carcinoma after IL-2 Administration

DOI: 10.1371/journal.pone.0030422

Full-Text   Cite this paper   Add to My Lib

Abstract:

Regulatory T cells (Treg cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of Treg cells was established. In IL-2 treated cancer patients a further Treg-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional Treg cells of a na?ve phenotype - as determined by CCR7 and CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased na?ve Treg-cell pool. Higher frequencies of T-cell receptor excision circles in na?ve Treg cells indicate IL-2 dependent thymic generation of na?ve Treg cells as a mechanism leading to increased frequencies of Treg cells post IL-2 treatment in cancer patients. This finding could be confirmed in na?ve murine Treg cells after IL-2 administration. These results point to a more complex regulation of Treg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of na?ve Treg cells.

References

[1]  Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nature reviews Immunology 10: 490–500.
[2]  Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352.
[3]  Shevach EM (2001) Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 193: F41–46.
[4]  Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, et al. (2001) Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 31: 1122–1131.
[5]  Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, et al. (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116: 2423–2433.
[6]  Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, et al. (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192: 303–310.
[7]  McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, et al. (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16: 311–323.
[8]  Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, et al. (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19: 345–354.
[9]  Tran DQ, Ramsey H, Shevach EM (2007) Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110: 2983–2990.
[10]  Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, et al. (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470: 548–553.
[11]  Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, et al. (2009) Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer cell 15: 114–123.
[12]  Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, et al. (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34: 336–344.
[13]  Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163: 5211–5218.
[14]  Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108: 804–811.
[15]  Beyer M, Schultze JL (2008) Immunoregulatory T cells: role and potential as a target in malignancy. Curr Oncol Rep 10: 130–136.
[16]  Beyer M, Schultze JL (2009) Regulatory T cells: major players in the tumor microenvironment. Current pharmaceutical design 15: 1879–1892.
[17]  Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, et al. (2007) Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. International journal of cancer Journal international du cancer 120: 2723–2733.
[18]  Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, et al. (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112: 610–618.
[19]  Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, et al. (2006) CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE 1: e129.
[20]  Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, et al. (2008) Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother 57: 813–821.
[21]  Ling KL, Pratap SE, Bates GJ, Singh B, Mortensen NJ, et al. (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7: 7.
[22]  Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287–296.
[23]  Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M (2005) A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest 115: 1953–1962.
[24]  Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, et al. (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30: 899–911.
[25]  Santner-Nanan B, Seddiki N, Zhu E, Quent V, Kelleher A, et al. (2008) Accelerated age-dependent transition of human regulatory T cells to effector memory phenotype. Int Immunol 20: 375–383.
[26]  Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, et al. (2006) Persistence of naive CD45RA+ regulatory T cells in adult life. Blood 107: 2830–2838.
[27]  Beyer M, Schultze JL (2007) CD4+CD25highFOXP3+ regulatory T cells in peripheral blood are primarily of effector memory phenotype. J Clin Oncol 25: 2628–2630.
[28]  Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, et al. (2006) In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107: 3940–3949.
[29]  Beyer M, Classen S, Endl E, Kochanek M, Weihrauch MR, et al. (2011) Comparative Approach to Define Increased Regulatory T Cells in Different Cancer Subtypes by Combined Assessment of CD127 and FOXP3. Clinical & developmental immunology 2011: 734036.
[30]  Hori S, Haury M, Lafaille JJ, Demengeot J, Coutinho A (2002) Peripheral expansion of thymus-derived regulatory cells in anti-myelin basic protein T cell receptor transgenic mice. Eur J Immunol 32: 3729–3735.
[31]  Kasow KA, Chen X, Knowles J, Wichlan D, Handgretinger R, et al. (2004) Human CD4+CD25+ regulatory T cells share equally complex and comparable repertoires with CD4+CD25? counterparts. J Immunol 172: 6123–6128.
[32]  Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4: 665–674.
[33]  Bayer AL, Yu A, Adeegbe D, Malek TR (2005) Essential role for interleukin-2 for CD4(+)CD25(+) T regulatory cell development during the neonatal period. J Exp Med 201: 769–777.
[34]  Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6: 1142–1151.
[35]  Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201: 723–735.
[36]  Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196: 851–857.
[37]  Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107: 2409–2414.
[38]  Zhang H, Chua KS, Guimond M, Kapoor V, Brown MV, et al. (2005) Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat Med 11: 1238–1243.
[39]  Cesana GC, DeRaffele G, Cohen S, Moroziewicz D, Mitcham J, et al. (2006) Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 24: 1169–1177.
[40]  Sosman JA, Carrillo C, Urba WJ, Flaherty L, Atkins MB, et al. (2008) Three phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J Clin Oncol 26: 2292–2298.
[41]  Wei S, Kryczek I, Edwards RP, Zou L, Szeliga W, et al. (2007) Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 67: 7487–7494.
[42]  van der Vliet HJ, Koon HB, Yue SC, Uzunparmak B, Seery V, et al. (2007) Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin Cancer Res 13: 2100–2108.
[43]  Jensen HK, Donskov F, Nordsmark M, Marcussen N, von der Maase H (2009) Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin Cancer Res 15: 1052–1058.
[44]  Correale P, Cusi MG, Tsang KY, Del Vecchio MT, Marsili S, et al. (2005) Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 23: 8950–8958.
[45]  Correale P, Tagliaferri P, Fioravanti A, Del Vecchio MT, Remondo C, et al. (2008) Immunity Feedback and Clinical Outcome in Colon Cancer Patients Undergoing Chemoimmunotherapy with Gemcitabine+FOLFOX followed by Subcutaneous Granulocyte Macrophage Colony-Stimulating Factor and Aldesleukin (GOLFIG-1 Trial). Clin Cancer Res 14: 4192–4199.
[46]  Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, et al. (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106: 2018–2025.
[47]  Baecher-Allan C, Viglietta V, Hafler DA (2004) Human CD4+CD25+ regulatory T cells. Semin Immunol 16: 89–98.
[48]  Tosello V, Odunsi K, Souleimanian NE, Lele S, Shrikant P, et al. (2008) Differential expression of CCR7 defines two distinct subsets of human memory CD4+CD25+ Tregs. Clin Immunol 126: 291–302.
[49]  Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202: 1375–1386.
[50]  Thornton AM, Donovan EE, Piccirillo CA, Shevach EM (2004) Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol 172: 6519–6523.
[51]  Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8: 1353–1362.
[52]  Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, et al. (2006) IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108: 1571–1579.
[53]  Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, et al. (2005) Persistence of naive CD45RA+ regulatory T cells in adult life. Blood.
[54]  Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, et al. (2005) Hassall's corpuscles instruct dendritic cells to induce CD4(+)CD25(+) regulatory T cells in human thymus. Nature 436: 1181–1185.
[55]  Burchill MA, Yang JY, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3(+) regulatory T cells. Journal of Immunology 178: 280–290.
[56]  Weihrauch MR, Ansen S, Jurkiewicz E, Geisen C, Xia Z, et al. (2005) Phase I/II combined chemoimmunotherapy with carcinoembryonic antigen-derived HLA-A2-restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer. Clin Cancer Res 11: 5993–6001.
[57]  Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM (2006) Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 36: 2139–2149.
[58]  Chu YW, Memon SA, Sharrow SO, Hakim FT, Eckhaus M, et al. (2004) Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 104: 1110–1119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133