Loss of the conserved “cryptic” plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains.
References
[1]
Stephens RS, Myers G, Eppinger M, Bavoil PM (2009) Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol 55: 115–119.
[2]
Comanducci M, Ricci S, Ratti G (1988) The structure of a plasmid of Chlamydia trachomatis believed to be required for growth within mammalian cells. Mol Microbiol 2: 531–538.
[3]
O'Connell CM, Nicks KM (2006) A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. Microbiology 152: 1601–1607.
[4]
O'Connell CM, Ingalls RR, Andrews CW Jr, Skurlock AM, Darville T (2007) Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J Immunol 179: 4027–4034.
[5]
Russell M, Darville T, Chandra-Kuntal K, Smith B, Andrews CW Jr, et al. (2011) Infectivity acts as in vivo selection for maintenance of the chlamydial “cryptic” plasmid. Infect Immun: 79: 98–107.
[6]
Matsumoto A, Izutsu H, Miyashita N, Ohuchi M (1998) Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J Clin Microbiol 36: 3013–3019.
[7]
Darville T, O'Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, et al. (2003) Toll-like receptor-2, but not toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 171: 6187–6197.
[8]
O'Connell CM, Abdelrahman YM, Green E, Darville HK, Saira K, et al. (2011) TLR2 activation by Chlamydia trachomatis is plasmid-dependent and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect Immun 79: 1044–1056.
[9]
Rank RG, Bowlin AK, Reed RL, Darville T (2003) Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect Immun 71: 6148–6154.
[10]
Rank RG, Sanders MM, Bowie WR, Caldwell HD, Jones RB, et al. (1990) Ascending genital tract infection as a common consequence of vaginal inoculation with the guinea pig inclusion conjunctivitis agent in normal guinea pigs. Chlamydial infections. New York: Cambridge University Press. pp. 249–252.
[11]
Batteiger BE, Rank RG, Soderberg LSF, Bowie WR, Caldwell HD, et al. (1990) Immunization of guinea pigs with isolated chlamydial outer membrane proteins. Chlamydial infections. New York: Cambridge University Press. pp. 2650–2268.
[12]
Rank RG, Sanders MM (1992) Pathogenesis of endometritis and salpingitis in a guinea pig model of chlamydial genital infection. Am J Pathol 140: 927–936.
[13]
Gordon FB, Quan AL (1972) Susceptibility of Chlamydia to antibacterial drugs: test in cell cultures. Antimicrob Agents Chemother 2: 242–244.
[14]
Rockey DD, Fischer ER, Hackstadt T (1996) Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect Immun 64: 4269–4278.
[15]
Fan VS, Jenkin HM (1970) Glycogen metabolism in Chlamydia-infected HeLa-cells. J Bacteriol 104: 608–609.
[16]
Kelly KA, Robinson EA, Rank RG (1996) Initial route of antigen administration alters the T-cell cytokine profile produced in response to the mouse pneumonitis biovar of Chlamydia trachomatis following genital infection. Infect Immun 64: 4976–4983.
[17]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.
[18]
Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, et al. (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277: 47834–47843.
[19]
Inaba K, Inaba M, Romani N, Aya H, Deguchi M, et al. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693–1702.
[20]
Pasley JN, Rank RG, Hough AJ Jr, Cohen C, Barron AL (1985) Effects of various doses of estradiol on chlamydial genital infection in ovariectomized guinea pigs. Sex Transm Dis 12: 8–13.
[21]
Darville T, Andrews CW Jr, Laffoon KK, Shymasani W, Kishen LR, et al. (1997) Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect Immun 65: 3065–3073.
[22]
Patterson TL, Rank RG (1996) Immunity to reinfection and immunization of male guinea pigs against urethral infection with the agent of guinea pig inclusion conjunctivitis. Sex Transm Dis 23: 145–150.
[23]
O'Connell CM, Ionova IA, Quayle AJ, Visintin A, Ingalls RR (2006) Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem 281: 1652–1659.
[24]
Jorgensen I, Valdivia RH (2008) Pmp-like proteins Pls1 and Pls2 are secreted into the lumen of the Chlamydia trachomatis inclusion. Infect Immun 76: 3940–3950.
[25]
Koo IC, Walthers D, Hefty PS, Kenney LJ, Stephens RS (2006) ChxR is a transcriptional activator in Chlamydia. Proc Natl Acad Sci USA 103: 750–755.
[26]
Carlson JH, Whitmire WM, Crane DD, Wicke L, Virtaneva K, et al. (2008) The Chlamydia trachomatis plasmid Is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun 76: 2273–2283.
[27]
Ingalls RR, Rice PA, Qureshi N, Takayama K, Lin JS, et al. (1995) The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect Immun 63: 3125–3130.
[28]
Rank RG, Barron AL, Mardh PA, Holmes KK, Oriel JD, et al. (1982) Prolonged genital infection by GPIC agent associated with immunosuppression following treatment with estradiol. Chlamydial infections: Elsevier Biomedical Press, New York. pp. 391–394.
[29]
Kobayashi Y, Takeuchi H, Kitade M, Kikuchi I, Sato Y, et al. (2006) Pathological study of Fitz-Hugh-Curtis syndrome evaluated from fallopian tube damage. J Obstet Gynaecol Res 32: 280–285.
[30]
Thomas NS, Lusher M, Storey CC, Clarke IN (1997) Plasmid diversity in Chlamydia. Microbiology 143(Pt 6): 1847–1854.
[31]
Mitchell C, Hovis K, Bavoil P, Myers G, Carrasco J, et al. (2010) Comparison of koala LPCoLN and human strains of Chlamydia pneumoniae highlights extended genetic diversity in the species. BMC Genomics 11: 442.
[32]
Harley R, Day S, Di Rocco C, Helps C (2010) The Chlamydophila felis plasmid is highly conserved. Vet Microbiol 146: 172–174.
[33]
McClenaghan M, Honeycombe JR, Bevan BJ, Herring AJ (1988) Distribution of plasmid sequences in avian and mammalian strains of Chlamydia psittaci. J Gen Microbiol 134 (Pt 3): 559–565.
[34]
Ojcius DM, Degani H, Mispelter J, Dautry-Varsat A (1998) Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem 273: 7052–7058.
[35]
Prantner D, Darville T, Sikes JD, Andrews CW Jr, Brade H, et al. (2009) Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect Immun 77: 5334–5346.
[36]
Klinkert B, Narberhaus F (2009) Microbial thermosensors. Cell Mol Life Sci 66: 2661–2676.
[37]
Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol Mol Biol Rev 73: 233–248.
[38]
Lucchetti-Miganeh C, Burrowes E, Baysse C, Ermel G (2008) The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology 154: 16–29.
[39]
Lamarche MG, Wanner BL, Crépin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32: 461–473.
[40]
Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F, et al. (2010) Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis 201: Suppl 2S134–155.
[41]
Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
[42]
Sturdevant GL, Kari L, Gardner DJ, Olivares-Zavaleta N, Randall LB, et al. (2010) Frameshift mutations in a single novel virulence factor alter the in vivo pathogenicity of Chlamydia trachomatis for the female murine genital tract. Infect Immun 78: 3660–3668.
[43]
Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, et al. (2007) Chlamydia trachomatis: Genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 18: 161–71.
[44]
Read T, Brunham R, Shen C, Gill S, Heidelberg J, et al. (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28: 1397–1406.
[45]
Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen IT, et al. (2003) Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31: 2134–2147.
[46]
Azuma Y, Hirakawa H, Yamashita A, Cai Y, Rahman M, et al. (2006) Genome sequence of the cat pathogen, Chlamydophila felis. DNA Res 13: 15–23.
[47]
Thomas N, Lusher M, Storey C, Clarke I (1997) Plasmid diversity in Chlamydia. Microbiology 143: 1847–1854.