The signaling pathways associated with the Toll-like receptors (TLRs) and nuclear factor-kappaB (NF-κB) are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT). LPS stimulation activated miR-16 gene transcription in human monocytes (U937) and biliary epithelial cells (H69) through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3′-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene.
References
[1]
Viswanathan VK, Hecht G (2000) Innate immunity and the gut. Curr Opin Gastroenterol 16: 546–551.
Kobayashi KS, Flavell RA (2004) Shielding the double-edged sword: negative regulation of the innate immune system. J Leukoc Biol 75: 428–433.
[4]
Chen XM, O'Hara SP, LaRusso NF (2008) The immunobiology of cholangiocytes. Immunol Cell Biol 86: 497–505.
[5]
Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132: 344–362.
[6]
Angrisano T, Pero R, Peluso S, Keller S, Sacchetti S, et al. (2010) LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiol 10: 172.
[7]
Hamon MA, Cossart P (2008) Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4: 100–109.
[8]
Bayarsaihan D (2011) Epigenetic mechanisms in inflammation. J Dent Res 90: 9–17.
[9]
Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457.
[10]
Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, et al. (2000) A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14: 1048–1057.
[11]
Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G, et al. (2009) Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev 23: 681–693.
[12]
Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.
[13]
Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116: 511–526.
[14]
Hoberg JE, Yeung F, Mayo MW (2004) SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell 16: 245–255.
O'Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11: 163–175.
[21]
Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, et al. (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179: 5082–5089.
[22]
Gong AY, Zhou R, Hu G, Liu J, Sosnowska D, et al. (2010) Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis 201: 160–169.
[23]
Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, et al. (2009) MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J Immunol 183: 1617–1624.
[24]
Zhou R, Hu G, Gong AY, Chen XM (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38: 3222–3232.
[25]
Zhou R, Hu G, Liu J, Gong AY, Drescher KM, et al. (2009) NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 5: e1000681.
[26]
Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, et al. (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120: 623–634.
[27]
Anderson P (2008) Post-transcriptional control of cytokine production. Nat Immunol 9: 353–359.
[28]
Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, et al. (2010) MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 11: 799–805.
[29]
Wang X, Hu G, Zhou J (2011) Repression of versican expression by microRNA-143. J Biol Chem 285: 23241–23250.
[30]
Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, et al. (2003) A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem 278: 32861–32871.
[31]
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.
[32]
Lee Y, Ahn C, Han J, Choi H, Kim J, et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419.
[33]
Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, et al. (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378: 492–504.
[34]
Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139: 112–122.
[35]
Guglielmelli P, Tozzi L, Bogani C, Iacobucci I, Ponziani V, et al. (2011) Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood 117: 6923–6927.
[36]
Shin VY, Jin H, Ng EK, Cheng AS, Chong WW, et al. (2011) NF-kappaB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis 32: 240–245.
[37]
Clark A, Dean J, Tudor C, Saklatvala J (2009) Post-transcriptional gene regulation by MAP kinases via AU-rich elements. Front Biosci 14: 847–871.
[38]
Stoecklin G, Anderson P (2006) Posttranscriptional mechanisms regulating the inflammatory response. Adv Immunol 89: 1–37.