全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

The Increased Expression of Integrin α6 (ITGA6) Enhances Drug Resistance in EVI1high Leukemia

DOI: 10.1371/journal.pone.0030706

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ecotropic viral integration site-1 (EVI1) is one of the candidate oncogenes for human acute myeloid leukemia (AML) with chromosomal alterations at 3q26. High EVI1 expression (EVI1high) is a risk factor for AML with poor outcome. Using DNA microarray analysis, we previously identified that integrin α6 (ITGA6) was upregulated over 10-fold in EVI1high leukemia cells. In this study, we determined whether the increased expression of ITGA6 is associated with drug-resistance and increased cell adhesion, resulting in poor prognosis. To this end, we first confirmed the expression pattern of a series of integrin genes using semi-quantitative PCR and fluorescence-activated cell sorter (FACS) analysis and determined the cell adhesion ability in EVI1high leukemia cells. We found that the adhesion ability of EVI1high leukemia cells to laminin increased with the increased expression of ITGA6 and integrin β4 (ITGB4). The introduction of small-hairpin RNA against EVI1 (shEVI1) into EVI1high leukemia cells reduced the cell adhesion ability and downregulated the expression of ITGA6 and ITGB4. In addition, the overexpression of EVI1 in EVI1low leukemia cells enhanced their cell adhesion ability and increased the expression of ITGA6 and ITGB4. In a subsequent experiment, the introduction of shRNA against ITGA6 or ITGB4 into EVI1high AML cells downregulated their cell adhesion ability; however, the EVI1high AML cells transfected with shRNA against ITGA6 could not be maintained in culture. Moreover, treating EVI1high leukemia cells with neutralizing antibodies against ITGA6 or ITGB4 resulted in an enhanced responsiveness to anti-cancer drugs and a reduction of their cell adhesion ability. The expression of ITGA6 is significantly elevated in cells from relapsed and EVI1high AML cases; therefore, ITGA6 might represent an important therapeutic target for both refractory and EVI1high AML.

References

[1]  Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, et al. (1988) Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54(6): 831–840.
[2]  Mucenski L, Taylor BA, Ihle JN, Hartley JW, Morse HC 3rd, et al. (1988) Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 8(1): 301–308.
[3]  Morishita K, Parganas E, Bartholomew C, Sacchi N, Valentine MB, et al. (1990) The human Evi-1 gene is located on chromosome 3q24–q28 but is not rearranged in three cases of acute nonlymphocytic leukemias containing t(3;5)(q25;q34) translocations. Oncogene Res 5(3): 221–231.
[4]  Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, et al. (2001) High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101(3): 837–845.
[5]  Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, et al. (2008) High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 over-expression and chromosome 3q26 abnormalities underestimated. Blood 111(8): 4329–4337.
[6]  Moroshita K (2007) Leukemogenesis of the EVI1/MEL1 gene family. Int J Hematol 85(4): 279–286.
[7]  Goyama S, Kurokawa M (2010) Evi-1 as a critical regulator of leukemic cells. Int J Hematol 91(5): 753–757.
[8]  Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, et al. (1998) The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 394(6688): 92–96.
[9]  Nitta E, Izutsu K, Yamaguchi Y, Imai Y, Ogawa S, et al. (2005) Oligomerization of Evi-1 regulated by the PR domain contributes to recruitment of corepressor CtBP. Oncogene 24: 6165–6173.
[10]  Palmer S, Brouillet JP, Kilbey A, Fulton R, Walker M, et al. (2001) Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem 276(25): 834–840.
[11]  Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, et al. (2005) Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 24(11): 1976–1987.
[12]  Shimahara A, Yamakawa N, Nishikata I, Morishita K (2010) Acetylation of lysine 564 adjacent to the C-terminal binding protein-binding motif in EVI1 is crucial for transcriptional activation of GATA2. J Biol Chem 285(22): 16967–16977.
[13]  Lvesque JP, Helwani FM, Winkler IG (2010) The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 24(12): 1979–1992.
[14]  Wu JY, Scadden DT, Kronenberg HM (2009) Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 24(5): 759–764.
[15]  Chan JY, Watt SM (2001) Adhesion receptors on heamatopoietic progenitor cells. Br J Haematol 112(3): 541–557.
[16]  Zhang J, Niu C, Ye L, Huang H, He X, et al. (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960): 836–841.
[17]  Zaidel-Bar R, Geiger B (2010) The switchable integrin adhesome. J Cell Sci 123(9): 1385–1388.
[18]  Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1): 9–22.
[19]  Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS (1995) The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. PNAS 92(21): 9647–9651.
[20]  Papayannopoulou T, Nakamoto B (1993) Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. PNAS 90(20): 9374–9378.
[21]  Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, et al. (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9(9): 1158–1165.
[22]  Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, et al. (2008) Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia 22(2): 353–60.
[23]  Becker PS, Kopecky KJ, Wilks AN, Chien S, Harlan JM, et al. (2009) Very late antigen-4 function of myeloblasts correlates with improved overall survival for patients with acute myeloid leukemia. Blood 113(4): 866–874.
[24]  Saito Y, Nakahata S, Yamakawa N, Kaneda K, Ichihara E, et al. (2011) CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression. Leukemia 25(4): 921–31.
[25]  Bergamini C, Sgarra C, Trerotoli P, Lupo L, Azzariti A, et al. (2007) Laminin-5 stimulates hepatocellular carcinoma growth through a different function of alpha6beta4 and alpha3beta1 integrins. Hepatology 46(6): 1801–1809.
[26]  Fortunel NO, Otu HH, Ng HH, Chen J, Mu X, et al. (2003) Comment on “‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 302(5644): 393.
[27]  Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM (2001) Molecular pathways in bone marrow homing: dominant role of α4β1 over β2-integrins and selectins. Blood 98(8): 2403–2411.
[28]  Scott LM, Priestley GV, Papayannopoulou T (2003) Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 23(24): 9349–9360.
[29]  Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, et al. (2009) Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 94(1): 131–134.
[30]  Yagi T, Morimoto A, Eguchi M, Hibi S, Sako M, et al. (2003) Identification of a gene expression signature associated with pediatric AML prognosis. Blood 102(5): 1849–1856.
[31]  Lin KT, Yeh SH, Chen DS, Chen PJ, Jou YS (2005) Epigenetic activation of a4, b2 and b6 integrins involved in cell migration in trichostatin A-treated Hep3B cells. J Biomed Sci 12(5): 803–813.
[32]  Liu Y, Chen L, Ko TC, Fields AP, Thompson EA (2006) Evi1 is a survival factor which conveys resistance to both TGF-beta and taxol-mediated cell death via PI3K/AKT. Oncogene 25(25): 3565–3575.
[33]  Bei L, Lu Y, Bellis SL, Zhou W, Horvath E, et al. (2007) Identification of a HoxA10 Activation Domain Necessary for Transcription of the Gene Encoding beta 3 integrin during Myeloid Differentiation. J Biol Chem 282(23): 16846–16859.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133