[1] | Olkkonen V, Ikonen E (2006) When intracellular logistics fails-genetic defects in membrane traf- ficking. Journal of Cell Science 119: 5031.
|
[2] | Tanaka N, Kyuuma M, Sugamura K (2008) Endosomal sorting complex required for transport proteins in cancer pathogenesis, vesicular transport, and non-endosomal functions. Cancer Science 99: 1293–1303.
|
[3] | Derby M, Gleeson P (2007) New insights into membrane trafficking and protein sorting. Int Rev Cytol 261: 47–116.
|
[4] | Bonifacino J, Glick B (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153–166.
|
[5] | Bowers K, Stevens T (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. BBA-Molecular Cell Research 1744: 438–454.
|
[6] | Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192: 189–221.
|
[7] | Mellman I, Nelson W (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9: 833–845.
|
[8] | Bloom G, Goldstein L (1998) Cruising along microtubule highways: how membranes move through the secretory pathway. J Cell Biol 140: 1277–1280.
|
[9] | Hehnly H, Stamnes M (2007) Regulating cytoskeleton-based vesicle motility. FEBS letters 581: 2112–2118.
|
[10] | Presley J, Cole N, Schroer T, Hirschberg K, Zaal K, et al. (1997) ER-to-Golgi transport visualized in living cells. Nature 389: 81–84.
|
[11] | Ross J, Ali M, Warshaw D (2008) Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20: 41–47.
|
[12] | Heinrich R, Rapoport T (2005) Generation of nonidentical compartments in vesicular transport systems. J Cell Biol 168: 271–280.
|
[13] | Hofmann K, Spahn C, Heinrich R, Heinemann U (2006) Building functional modules from molecular interactions. Trends Biochem Sci 31: 497–508.
|
[14] | Pfeffer S (2007) Unsolved mysteries in membrane traffic. Annu Rev Biochem 76: 629–645.
|
[15] | Pfeffer S (1999) Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1: E17–E22.
|
[16] | Chen Y, Scheller R (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2: 98–106.
|
[17] | Barlowe C (2002) COPII-dependent transport from the endoplasmic reticulum. Curr Op Cell Biol 14: 417–422.
|
[18] | Bethune J, Wieland F, Moelleken J (2006) COPI-mediated transport. J Membrane Biol 211: 65–79.
|
[19] | Kaksonen M, Toret C, Drubin D (2005) A modular design for the clathrin-and actin-mediated endocytosis machinery. Cell 123: 305–320.
|
[20] | Gong H, Sengupta D, Linstedt A, Schwartz R (2008) Simulated de novo assembly of Golgi compartments by selective cargo capture during vesicle budding and targeted vesicle fusion. Biophys J 95: 1674–1688.
|
[21] | Brusch L, Deutsch A (2008) The coherence of the vesicle theory of protein secretion. J Theo Biol 252: 370–373.
|
[22] | Birbaumer M, Schweitzer F (2011) Agent-based modeling of intracellular transport. The European Physical Journal B-Condensed Matter and Complex Systems 82: 245–255.
|
[23] | Kroeger J, Daher F, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle ow and spatial distribution in growing pollen tubes. Biophys J 97: 1822–1831.
|
[24] | Forster R, Weiss M, Zimmermann T, Reynaud E, Verissimo F, et al. (2006) Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 16: 173–179.
|
[25] | Füchslin R, Maeke T, McCaskill J (2009) Spatially resolved simulations of membrane reactions and dynamics: Multipolar reaction dpd. The European Physical Journal E: Soft Matter and Biological Physics 29: 431–448.
|
[26] | Shillcock J, Lipowsky R (2006) The computational route from bilayer membranes to vesicle fusion. Journal of Physics: Condensed Matter 18: S1191–S1219.
|
[27] | Smith E, Weisshaar J (2011) Docking, not fusion, as the rate-limiting step in a snare-driven vesicle fusion assay. Biophys J 100: 2141–2150.
|
[28] | Kirk S, Ward T (2007) COPII under the microscope. Seminars in Cell and Developmental Biology 18: 435–447.
|
[29] | Barr F, Egerer J (2005) Golgi positioning: are we looking at the right MAP? J Cell Biol 168: 993–998.
|
[30] | Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Experimental Cell Research 246: 263–279.
|
[31] | Rios R, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Opin Cell Biol 15: 60–66.
|
[32] | Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, et al. (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12: 2047–2060.
|
[33] | Colanzi A, Corda D (2007) Mitosis controls the Golgi and the Golgi controls mitosis. Curr Op Cell Biol 19: 386–393.
|
[34] | Meyer H (2005) Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. BBAMolecular Cell Research 1744: 108–119.
|
[35] | Allan V (1996) Role of motor proteins in organizing the endoplasmic reticulum and Golgi apparatus. Seminars in Cell and Developmental Biology 7: 335–342.
|
[36] | Lee M, Miller E, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annual Review of Cell and Developmental Biology 20: 87–123.
|
[37] | Lippincott-Schwartz J, Cole N, Marotta A, Conrad P, Bloom G (1995) Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol 128: 293–306.
|
[38] | Lippincott-Schwartz J (1998) Cytoskeletal proteins and Golgi dynamics. Curr Opin Cell Biol 10: 52–59.
|
[39] | Kondylis V, Rabouille C (2009) The Golgi apparatus: Lessons from Drosophila. FEBS letters 583: 3827–3838.
|
[40] | Cole N, Lippincott-Schwartz J (1995) Organization of organelles and membrane traffic by microtubules. Curr Op Cell Biol 7: 55–64.
|
[41] | H?pfner S (2005) Modulation of Cargo Transport and Sorting through Endosome Motility and Positioning. Ph.D. thesis, Technische Universit?t Dresden.
|
[42] | Horgan C, Hanscom S, Jolly R, Futter C, McCaffrey M (2010) Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment. J Cell Sci 123: 181–191.
|
[43] | Moseley J, Goode B (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70: 605–645.
|
[44] | Pollack G (2001) Cells, Gels and the Engines of Life. Ebner & Sons Seattle WA, USA.
|
[45] | Gundelfinger E, Kessels M, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4: 127–139.
|
[46] | Foret L, Sens P (2008) Kinetic regulation of coated vesicle secretion. Proc Natl Acad Sci 105: 14763–14768.
|
[47] | Presley J, Ward T, Pfeifer A, Siggia E, Phair R, et al. (2002) Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417: 187–193.
|
[48] | Klumpp S, Nieuwenhuizen T, Lipowsky R (2005) Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments. Biophys J 88: 3118–3132.
|
[49] | Graf C (2006) Untersuchung der funktionellen Interaktionen von SNARE-Proteinen des frühen sekretorischen Transportweges mittels komplement?rer Substitutionen in der ‘0’-Ebene der SNARE-Dom?ne. Ph.D. thesis, Freie Universit?t Berlin.
|
[50] | Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Developmental Cell 12: 671–682.
|
[51] | Kim K, Galletta B, Schmidt K, Chang F, Blumer K, et al. (2006) Actin-based motility during endocytosis in budding yeast. Mol Biol Cell 17: 1354–1363.
|
[52] | Kaksonen M, Toret C, Drubin D (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7: 404–414.
|
[53] | Farhan H, Weiss M, Tani K, Kaufman R, Hauri H (2008) Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. The EMBO Journal 27: 2043–2054.
|
[54] | Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10: 609–622.
|
[55] | Toret C, Drubin D (2006) The budding yeast endocytic pathway. J Cell Sci 119: 4585–4587.
|
[56] | Toshima J, Toshima J, Kaksonen M, Martin A, King D, et al. (2006) Spatial dynamics of receptormediated endocytic trafficking in budding yeast revealed by using uorescent α-factor derivatives. Proc Natl Acad Sci 103: 5793.
|
[57] | Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Op Cell Biol 16: 400–406.
|
[58] | Valdez-Taubas J, Pelham H (2003) Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13: 1636–1640.
|
[59] | Mulholland J, Konopka J, Singer-Kruger B, Zerial M, Botstein D (1999) Visualization of receptormediated endocytosis in yeast. Mol Biol Cell 10: 799–817.
|
[60] | Falk M, Klann M, Reuss M, Ertl T (2010) 3 d visualization of concentrations from stochastic agentbased signal transduction simulations. Proceedings of 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2010). pp. 1301–1304.
|
[61] | Klann M, Lapin A, Reuss M (2011) Stochastic Simulation of Reactions in the Crowded and Structured Intracellular Environment: Inuence of Mobility and Location of the Reactants. BMC Systems Biology 5: 71.
|
[62] | Falk M, Klann M, Reuss M, Ertl T (2009) Visualization of signal transduction processes in the crowded environment of the cell. Proceedings of IEEE Pacific Visualization Symposium 2009 (PacificVis ‘09). pp. 169–176.
|
[63] | Klann M, Lapin A, Reuss M (2009) Stochastic Simulation of Signal Transduction: Impact of the Cellular Architecture on Diffusion. Biophys J 96: 5122–5129.
|
[64] | Pogson M, Smallwood R, Qwarnstrom E, Holcombe M (2006) Formal agent-based modelling of intracellular chemical interactions. Biosystems 85: 37–45.
|
[65] | Andrews S, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1: 137–151.
|
[66] | Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys 22: 403–434.
|
[67] | Karetkin E, Di Giovanni J, Iborra C, Coleman J, OShaughnessy B, et al. (2010) A fast, singlevesicle fusion assay mimics physiological snare requirements. Proc Natl Acad Sci 107: 3517–3521.
|