全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road

DOI: 10.1371/journal.pone.0029645

Full-Text   Cite this paper   Add to My Lib

Abstract:

The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.

References

[1]  Olkkonen V, Ikonen E (2006) When intracellular logistics fails-genetic defects in membrane traf- ficking. Journal of Cell Science 119: 5031.
[2]  Tanaka N, Kyuuma M, Sugamura K (2008) Endosomal sorting complex required for transport proteins in cancer pathogenesis, vesicular transport, and non-endosomal functions. Cancer Science 99: 1293–1303.
[3]  Derby M, Gleeson P (2007) New insights into membrane trafficking and protein sorting. Int Rev Cytol 261: 47–116.
[4]  Bonifacino J, Glick B (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153–166.
[5]  Bowers K, Stevens T (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. BBA-Molecular Cell Research 1744: 438–454.
[6]  Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192: 189–221.
[7]  Mellman I, Nelson W (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9: 833–845.
[8]  Bloom G, Goldstein L (1998) Cruising along microtubule highways: how membranes move through the secretory pathway. J Cell Biol 140: 1277–1280.
[9]  Hehnly H, Stamnes M (2007) Regulating cytoskeleton-based vesicle motility. FEBS letters 581: 2112–2118.
[10]  Presley J, Cole N, Schroer T, Hirschberg K, Zaal K, et al. (1997) ER-to-Golgi transport visualized in living cells. Nature 389: 81–84.
[11]  Ross J, Ali M, Warshaw D (2008) Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20: 41–47.
[12]  Heinrich R, Rapoport T (2005) Generation of nonidentical compartments in vesicular transport systems. J Cell Biol 168: 271–280.
[13]  Hofmann K, Spahn C, Heinrich R, Heinemann U (2006) Building functional modules from molecular interactions. Trends Biochem Sci 31: 497–508.
[14]  Pfeffer S (2007) Unsolved mysteries in membrane traffic. Annu Rev Biochem 76: 629–645.
[15]  Pfeffer S (1999) Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1: E17–E22.
[16]  Chen Y, Scheller R (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2: 98–106.
[17]  Barlowe C (2002) COPII-dependent transport from the endoplasmic reticulum. Curr Op Cell Biol 14: 417–422.
[18]  Bethune J, Wieland F, Moelleken J (2006) COPI-mediated transport. J Membrane Biol 211: 65–79.
[19]  Kaksonen M, Toret C, Drubin D (2005) A modular design for the clathrin-and actin-mediated endocytosis machinery. Cell 123: 305–320.
[20]  Gong H, Sengupta D, Linstedt A, Schwartz R (2008) Simulated de novo assembly of Golgi compartments by selective cargo capture during vesicle budding and targeted vesicle fusion. Biophys J 95: 1674–1688.
[21]  Brusch L, Deutsch A (2008) The coherence of the vesicle theory of protein secretion. J Theo Biol 252: 370–373.
[22]  Birbaumer M, Schweitzer F (2011) Agent-based modeling of intracellular transport. The European Physical Journal B-Condensed Matter and Complex Systems 82: 245–255.
[23]  Kroeger J, Daher F, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle ow and spatial distribution in growing pollen tubes. Biophys J 97: 1822–1831.
[24]  Forster R, Weiss M, Zimmermann T, Reynaud E, Verissimo F, et al. (2006) Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 16: 173–179.
[25]  Füchslin R, Maeke T, McCaskill J (2009) Spatially resolved simulations of membrane reactions and dynamics: Multipolar reaction dpd. The European Physical Journal E: Soft Matter and Biological Physics 29: 431–448.
[26]  Shillcock J, Lipowsky R (2006) The computational route from bilayer membranes to vesicle fusion. Journal of Physics: Condensed Matter 18: S1191–S1219.
[27]  Smith E, Weisshaar J (2011) Docking, not fusion, as the rate-limiting step in a snare-driven vesicle fusion assay. Biophys J 100: 2141–2150.
[28]  Kirk S, Ward T (2007) COPII under the microscope. Seminars in Cell and Developmental Biology 18: 435–447.
[29]  Barr F, Egerer J (2005) Golgi positioning: are we looking at the right MAP? J Cell Biol 168: 993–998.
[30]  Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Experimental Cell Research 246: 263–279.
[31]  Rios R, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Opin Cell Biol 15: 60–66.
[32]  Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, et al. (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12: 2047–2060.
[33]  Colanzi A, Corda D (2007) Mitosis controls the Golgi and the Golgi controls mitosis. Curr Op Cell Biol 19: 386–393.
[34]  Meyer H (2005) Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. BBAMolecular Cell Research 1744: 108–119.
[35]  Allan V (1996) Role of motor proteins in organizing the endoplasmic reticulum and Golgi apparatus. Seminars in Cell and Developmental Biology 7: 335–342.
[36]  Lee M, Miller E, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annual Review of Cell and Developmental Biology 20: 87–123.
[37]  Lippincott-Schwartz J, Cole N, Marotta A, Conrad P, Bloom G (1995) Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol 128: 293–306.
[38]  Lippincott-Schwartz J (1998) Cytoskeletal proteins and Golgi dynamics. Curr Opin Cell Biol 10: 52–59.
[39]  Kondylis V, Rabouille C (2009) The Golgi apparatus: Lessons from Drosophila. FEBS letters 583: 3827–3838.
[40]  Cole N, Lippincott-Schwartz J (1995) Organization of organelles and membrane traffic by microtubules. Curr Op Cell Biol 7: 55–64.
[41]  H?pfner S (2005) Modulation of Cargo Transport and Sorting through Endosome Motility and Positioning. Ph.D. thesis, Technische Universit?t Dresden.
[42]  Horgan C, Hanscom S, Jolly R, Futter C, McCaffrey M (2010) Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment. J Cell Sci 123: 181–191.
[43]  Moseley J, Goode B (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70: 605–645.
[44]  Pollack G (2001) Cells, Gels and the Engines of Life. Ebner & Sons Seattle WA, USA.
[45]  Gundelfinger E, Kessels M, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4: 127–139.
[46]  Foret L, Sens P (2008) Kinetic regulation of coated vesicle secretion. Proc Natl Acad Sci 105: 14763–14768.
[47]  Presley J, Ward T, Pfeifer A, Siggia E, Phair R, et al. (2002) Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417: 187–193.
[48]  Klumpp S, Nieuwenhuizen T, Lipowsky R (2005) Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments. Biophys J 88: 3118–3132.
[49]  Graf C (2006) Untersuchung der funktionellen Interaktionen von SNARE-Proteinen des frühen sekretorischen Transportweges mittels komplement?rer Substitutionen in der ‘0’-Ebene der SNARE-Dom?ne. Ph.D. thesis, Freie Universit?t Berlin.
[50]  Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Developmental Cell 12: 671–682.
[51]  Kim K, Galletta B, Schmidt K, Chang F, Blumer K, et al. (2006) Actin-based motility during endocytosis in budding yeast. Mol Biol Cell 17: 1354–1363.
[52]  Kaksonen M, Toret C, Drubin D (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7: 404–414.
[53]  Farhan H, Weiss M, Tani K, Kaufman R, Hauri H (2008) Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. The EMBO Journal 27: 2043–2054.
[54]  Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10: 609–622.
[55]  Toret C, Drubin D (2006) The budding yeast endocytic pathway. J Cell Sci 119: 4585–4587.
[56]  Toshima J, Toshima J, Kaksonen M, Martin A, King D, et al. (2006) Spatial dynamics of receptormediated endocytic trafficking in budding yeast revealed by using uorescent α-factor derivatives. Proc Natl Acad Sci 103: 5793.
[57]  Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Op Cell Biol 16: 400–406.
[58]  Valdez-Taubas J, Pelham H (2003) Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13: 1636–1640.
[59]  Mulholland J, Konopka J, Singer-Kruger B, Zerial M, Botstein D (1999) Visualization of receptormediated endocytosis in yeast. Mol Biol Cell 10: 799–817.
[60]  Falk M, Klann M, Reuss M, Ertl T (2010) 3 d visualization of concentrations from stochastic agentbased signal transduction simulations. Proceedings of 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2010). pp. 1301–1304.
[61]  Klann M, Lapin A, Reuss M (2011) Stochastic Simulation of Reactions in the Crowded and Structured Intracellular Environment: Inuence of Mobility and Location of the Reactants. BMC Systems Biology 5: 71.
[62]  Falk M, Klann M, Reuss M, Ertl T (2009) Visualization of signal transduction processes in the crowded environment of the cell. Proceedings of IEEE Pacific Visualization Symposium 2009 (PacificVis ‘09). pp. 169–176.
[63]  Klann M, Lapin A, Reuss M (2009) Stochastic Simulation of Signal Transduction: Impact of the Cellular Architecture on Diffusion. Biophys J 96: 5122–5129.
[64]  Pogson M, Smallwood R, Qwarnstrom E, Holcombe M (2006) Formal agent-based modelling of intracellular chemical interactions. Biosystems 85: 37–45.
[65]  Andrews S, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1: 137–151.
[66]  Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys 22: 403–434.
[67]  Karetkin E, Di Giovanni J, Iborra C, Coleman J, OShaughnessy B, et al. (2010) A fast, singlevesicle fusion assay mimics physiological snare requirements. Proc Natl Acad Sci 107: 3517–3521.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133