Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16:0 and 18:1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34:1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30:0 PC did not restore invadopodia and 36:2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34:1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis.
References
[1]
Gimona M, Buccione R, Courtneidge SA, Linder S (2008) Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20: 235–241.
[2]
Murphy DA, Courtneidge SA (2011) The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nature reviews Molecular cell biology 12: 413–426.
[3]
Gimona M, Buccione R (2006) Adhesions that mediate invasion. Int J Biochem Cell Biol 38: 1875–1892.
[4]
Rottiers P, Saltel F, Daubon T, Chaigne-Delalande B, Tridon V, et al. (2009) TGF-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. Journal of cell science 122: 4311–4318.
[5]
Diaz B, Shani G, Pass I, Anderson D, Quintavalle M, et al. (2009) Tks5-Dependent, Nox-Mediated Generation of Reactive Oxygen Species Is Necessary for Invadopodia Formation. Sci Signal 2: ra53-.
[6]
Oikawa T, Takenawa T (2009) PtdIns(3,4)P2 instigates focal adhesions to generate podosomes. Cell adhesion & migration 3: 195–197.
[7]
Yamaguchi H, Oikawa T (2010) Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget 1: 320–328.
[8]
Oikawa T, Itoh T, Takenawa T (2008) Sequential signals toward podosome formation in NIH-src cells. J Cell Biol 182: 157–169.
[9]
Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M, et al. (2011) Phosphoinositide 3-kinase signaling pathway mediated by p110alpha regulates invadopodia formation. The Journal of cell biology 193: 1275–1288.
[10]
Seals DF, Azucena JEF, Pass I, Tesfay L, Gordon R, et al. (2005) The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7: 155–165.
[11]
Caldieri G, Giacchetti G, Beznoussenko G, Attanasio F, Ayala I, et al. (2009) Invadopodia biogenesis is regulated by caveolin-mediated modulation of membrane cholesterol levels. Journal of Cellular and Molecular Medicine 13: 1728–1740.
[12]
Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, et al. (2009) Lipid Rafts and Caveolin-1 Are Required for Invadopodia Formation and Extracellular Matrix Degradation by Human Breast Cancer Cells. Cancer Res 69: 8594–8602.
[13]
Albiges-Rizo C, Destaing O, Fourcade B, Planus E, Block MR (2009) Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci 122: 3037–3049.
[14]
Baron A, Migita T, Tang D, Loda M (2004) Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem 91: 47–53.
[15]
Kim K-H (1997) Regulation of Mammalian Acetyl-Coenzyme A Carboxylase. Annual Review of Nutrition 17: 77–99.
[16]
Saggerson D (2008) Malonyl-CoA, a Key Signaling Molecule in Mammalian Cells. Annual Review of Nutrition 28: 253–272.
[17]
Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, et al. (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302: 898–903.
[18]
Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7: 763–777.
[19]
Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clinical Cancer Research 3: 2115–2120.
[20]
Witters LA, Widder J, King A, Fassihi K, Kuhajda F (1994) Identification of human acetyl-CoA carboxylase isozymes in tissue and in breast cancer cells. International Journal of Biochemistry 26: 589–594.
[21]
Alo PL, Visca P, Marci A, Mangoni A, Botti C, et al. (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77: 474–482.
[22]
Epstein JI, Carmichael M, Partin AW (1995) OA-519 (fatty acid synthase) as an independent predictor of pathologic stage in adenocarcinoma of the prostate. Urology 45: 81–86.
[23]
Gansler TS, Hardman W, Hunt DA, Schaffel S, Hennigar RA (1997) Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Human Pathology 28: 686–692.
[24]
Horiguchi A, Asano T, Asano T, Ito K, Sumitomo M, et al. (2008) Fatty Acid Synthase Over Expression is an Indicator of Tumor Aggressiveness and Poor Prognosis in Renal Cell Carcinoma. The Journal of Urology 180: 1137–1140.
[25]
Myers RB, Oelschlager DK, Weiss HL, Frost AR, Grizzle WE (2001) Fatty acid synthase: an early molecular marker of progression of prostatic adenocarcinoma to androgen independence. J Urol 165: 1027–1032.
[26]
Rossi S, Graner E, Febbo P, Weinstein L, Bhattacharya N, et al. (2003) Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol Cancer Res 1: 707–715.
[27]
Sebastiani V, Visca P, Botti C, Santeusanio G, Galati GM, et al. (2004) Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma. Gynecol Oncol 92: 101–105.
[28]
Shurbaji MS, Kalbfleisch JH, Thurmond TS (1996) Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Human Pathology 27: 917–921.
[29]
Conde E, Suarez-Gauthier A, García-García E, Lopez-Rios F, Lopez-Encuentra A, et al. (2007) Specific pattern of LKB1 and phospho-acetyl-CoA carboxylase protein immunostaining in human normal tissues and lung carcinomas. Human Pathology 38: 1351–1360.
[30]
Miyazaki M, Man WC, Ntambi JM (2001) Targeted Disruption of Stearoyl-CoA Desaturase1 Gene in Mice Causes Atrophy of Sebaceous and Meibomian Glands and Depletion of Wax Esters in the Eyelid. The Journal of Nutrition 131: 2260–2268.
[31]
Xu J (2001) Preparation, Culture, and Immortalization of Mouse Embryonic Fibroblasts. John Wiley & Sons, Inc.
[32]
Little JL, Wheeler FB, Fels DR, Koumenis C, Kridel SJ (2007) Inhibition of Fatty Acid Synthase Induces Endoplasmic Reticulum Stress in Tumor Cells. Cancer Res 67: 1262–1269.
[33]
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917.
[34]
Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1: 85–86.
[35]
DeLong CJ, Baker PR, Samuel M, Cui Z, Thomas MJ (2001) Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography. J Lipid Res 42: 1959–1968.
[36]
Van Kessel WS, Hax WM, Demel RA, De Gier J (1977) High performance liquid chromatographic separation and direct ultraviolet detection of phospholipids. Biochimica et biophysica acta 486: 524–530.
[37]
Bowden ET, Coopman P, Mueller SC (2001) Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol 63: 613–627.
[38]
Tarone G, Cirillo D, Giancotti FG, Comoglio PM, Marchisio PC (1985) Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Experimental Cell Research 159: 141–157.
[39]
Harwood HJ Jr, Petras SF, Shelly LD, Zaccaro LM, Perry DA, et al. (2003) Isozyme-nonselective N-Substituted Bipiperidylcarboxamide Acetyl-CoA Carboxylase Inhibitors Reduce Tissue Malonyl-CoA Concentrations, Inhibit Fatty Acid Synthesis, and Increase Fatty Acid Oxidation in Cultured Cells and in Experimental Animals. J Biol Chem 278: 37099–37111.
[40]
Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, et al. (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research 70: 8117–8126.
[41]
Ansell GB, Spanner S (1982) Phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine. In: Hawthorne JN, Ansell GB, editors. Phospholipids. Amsterdam: Elsevier Biomedical. pp. 1–50.
[42]
Camassei FD, Jenkner A, Rava L, Bosman C, Francalanci P, et al. (2003) Expression of the lipogenic enzyme fatty acid synthase (FAS) as a predictor of poor outcome in nephroblastoma: an interinstitutional study. Med Pediatr Oncol 40: 302–308.
[43]
Chichili GR, Rodgers W (2009) Cytoskeleton-membrane interactions in membrane raft structure. Cellular and molecular life sciences : CMLS 66: 2319–2328.
[44]
Albrechtsen R, Stautz D, Sanjay A, Kveiborg M, Wewer UM (2011) Extracellular engagement of ADAM12 induces clusters of invadopodia with localized ectodomain shedding activity. Experimental cell research 317: 195–209.
[45]
Yamaguchi H, Yoshida S, Muroi E, Kawamura M, Kouchi Z, et al. (2010) Phosphatidylinositol 4,5-bisphosphate and PIP5-kinase Ialpha are required for invadopodia formation in human breast cancer cells. Cancer Sci 101: 1632–1638.
[46]
Abram CL, Seals DF, Pass I, Salinsky D, Maurer L, et al. (2003) The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem 278: 16844–16851.
[47]
Buschman MD, Bromann PA, Cejudo-Martin P, Wen F, Pass I, et al. (2009) The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation. Mol Biol Cell 20: 1302–1311.
[48]
Miki H, Miura K, Takenawa T (1996) N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15: 5326–5335.
[49]
Achiriloaie M, Barylko B, Albanesi JP (1999) Essential Role of the Dynamin Pleckstrin Homology Domain in Receptor-Mediated Endocytosis. Mol Cell Biol 19: 1410–1415.
[50]
Janmey PA, Stossel TP (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325: 362–364.
[51]
Chellaiah MA, Biswas RS, Yuen D, Alvarez UM, Hruska KA (2001) Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin. J Biol Chem 276: 47434–47444.
[52]
Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annual review of physiology 65: 761–789.
[53]
Devaux PF, Morris R (2004) Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5: 241–246.
[54]
Ho H-YH, Rohatgi R, Lebensohn AM, Le M, Li J, et al. (2004) Toca-1 Mediates Cdc42-Dependent Actin Nucleation by Activating the N-WASP-WIP Complex. Cell 118: 203–216.
[55]
Takano K, Toyooka K, Suetsugu S (2008) EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27: 2817–2828.
[56]
Cory GOC, Cullen Peter J (2007) Membrane Curvature: The Power of Bananas, Zeppelins and Boomerangs. Current Biology 17: R455–R457.
[57]
Bharti S, Inoue H, Bharti K, Hirsch DS, Nie Z, et al. (2007) Src-Dependent Phosphorylation of ASAP1 Regulates Podosomes. Mol Cell Biol 27: 8271–8283.
[58]
Tsuboi S, Takada H, Hara T, Mochizuki N, Funyu T, et al. (2009) FBP17 Mediates a Common Molecular Step in the Formation of Podosomes and Phagocytic Cups in Macrophages. Journal of Biological Chemistry 284: 8548–8556.
[59]
Favero CB, Mandell JW (2007) A pharmacological activator of AMP-activated protein kinase (AMPK) induces astrocyte stellation. Brain Research 1168: 1–10.
[60]
Blume C, Benz PM, Walter U, Ha J, Kemp BE, et al. (2007) AMP-activated Protein Kinase Impairs Endothelial Actin Cytoskeleton Assembly by Phosphorylating Vasodilator-stimulated Phosphoprotein. Journal of Biological Chemistry 282: 4601–4612.
[61]
Miranda L, Carpentier S, Platek A, Hussain N, Gueuning M-A, et al. (2010) AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells. Biochemical and Biophysical Research Communications 396: 656–661.
[62]
Moser TS, Jones RG, Thompson CB, Coyne CB, Cherry S (2010) A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLoS pathogens 6: e1000954.
[63]
Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA (2003) 5′-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. The Journal of biological chemistry 278: 52042–52051.
[64]
Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: Specificity of the osteoclast model. European Journal of Cell Biology 85: 195–202.
[65]
Iqbal Z, Cejudo-Martin P, de Brouwer A, van der Zwaag B, Ruiz-Lozano P, et al. (2010) Disruption of the Podosome Adaptor Protein TKS4 (SH3PXD2B) Causes the Skeletal Dysplasia, Eye, and Cardiac Abnormalities of Frank-Ter Haar Syndrome. The American Journal of Human Genetics 86: 254–261.
[66]
Mao J, Yang T, Gu Z, Heird WC, Finegold MJ, et al. (2009) aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues. Proceedings of the National Academy of Sciences -.