A fluorescence microscopy method to directly follow the localization of defined proteins in Staphylococcus was hampered by the unstable fluorescence of fluorescent proteins. Here, we constructed plasmid (pCX) encoded red fluorescence (RF) mCherry (mCh) hybrids, namely mCh-cyto (no signal peptide and no sorting sequence), mCh-sec (with signal peptide), and mCh-cw (with signal peptide and cell wall sorting sequence). The S. aureus clones targeted mCh-fusion proteins into the cytosol, the supernatant and the cell envelope respectively; in all cases mCherry exhibited bright fluorescence. In staphylococci two types of signal peptides (SP) can be distinguished: the +YSIRK motif SPlip and the ?YSIRK motif SPsasF. mCh-hybrids supplied with the +YSIRK motif SPlip were always expressed higher than those with ?YSIRK motif SPsasF. To study the location of the anchoring process and also the influence of SP type, mCh-cw was supplied on the one hand with +YSIRK motif (mCh-cw1) and the other hand with -YSIRK motif (mCh-cw2). MCh-cw1 preferentially localized at the cross wall, while mCh-cw2 preferentially localized at the peripheral wall. Interestingly, when treated with sub-lethal concentrations of penicillin or moenomycin, both mCh-cw1 and mCh-cw2 were concentrated at the cross wall. The shift from the peripheral wall to the cross wall required Sortase A (SrtA), as in the srtA mutant this effect was blunted. The effect is most likely due to antibiotic mediated increase of free anchoring sites (Lipid II) at the cross wall, the substrate of SrtA, leading to a preferential incorporation of anchored proteins at the cross wall.
References
[1]
Schneewind O, Model P, Fischetti VA (1992) Sorting of protein A to the staphylococcal cell wall. Cell 70: 267–281.
[2]
Foster TJ, H??k M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6: 484–488.
[3]
Marraffini LA, Dedent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 70: 192–221.
[4]
Mazmanian SK, Liu G, Ton-That H, Schneewind O (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285: 760–763.
[5]
Perry AM, Ton-That H, Mazmanian SK, Schneewind O (2002) Anchoring of surface proteins to the cell wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. J Biol Chem 277: 16241–16248.
[6]
Rosenstein R, G?tz F (2000) Staphylococcal lipases: biochemical and molecular characterization. Biochimie 82: 1005–1014.
[7]
Bae T, Schneewind O (2003) The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol 185: 2910–2919.
[8]
Carlsson F, Stalhammar-Carlemalm M, Flardh K, Sandin C, Carlemalm E, et al. (2006) Signal sequence directs localized secretion of bacterial surface proteins. Nature 442: 943–946.
[9]
DeDent A, Bae T, Missiakas DM, Schneewind O (2008) Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus. EMBO J 27: 2656–2668.
[10]
Frankel MB, Wojcik BM, DeDent AC, Missiakas DM, Schneewind O (2010) ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus. Mol Microbiol 78: 238–252.
[11]
DeDent AC, McAdow M, Schneewind O (2007) Distribution of protein A on the surface of Staphylococcus aureus. J Bacteriol 189: 4473–4484.
[12]
Hahn JJ, Cole RM (1963) Streptococcal M Antigen Location and Synthesis, Studied by Immunofluorescence. J Exp Med 118: 659–666.
[13]
Strauss A, G?tz F (1996) In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol Microbiol 21: 491–500.
[14]
Müller-Anstett MA, Müller P, Albrecht T, Nega M, Wagener J, et al. (2010) Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One 5: e13153.
[15]
Wieland KP, Wieland B, G?tz F (1995) A promoter-screening plasmid and xylose-inducible, glucose-repressible expression vectors for Staphylococcus carnosus. Gene 158: 91–96.
[16]
Demleitner G, G?tz F (1994) Evidence for importance of the Staphylococcus hyicus lipase pro-peptide in lipase secretion, stability and activity. FEMS Microbiol Lett 121: 189–197.
[17]
Sturmfels A, G?tz F, Peschel A (2001) Secretion of human growth hormone by the food-grade bacterium Staphylococcus carnosus requires a propeptide irrespective of the signal peptide used. Arch Microbiol 175: 295–300.
[18]
Ton-That H, Schneewind O (1999) Anchor structure of staphylococcal surface proteins. IV. Inhibitors of the cell wall sorting reaction. J Biol Chem 274: 24316–24320.
[19]
Kellner R, Jung G, H?rner T, Z?hner H, Schnell N, et al. (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem 177: 53–59.
[20]
Br?tz H, Josten M, Wiedemann I, Schneider U, G?tz F, et al. (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30: 317–327.
[21]
Lambert MP, Neuhaus FC (1972) Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110: 978–987.
[22]
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567–1572.
[23]
Chen JC, Viollier PH, Shapiro L (2005) A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant. Mol Microbiol 55: 1085–1103.
[24]
Lewenza S, Vidal-Ingigliardi D, Pugsley AP (2006) Direct visualization of red fluorescent lipoproteins indicates conservation of the membrane sorting rules in the family Enterobacteriaceae. J Bacteriol 188: 3516–3524.
[25]
Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38.
[26]
Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182: 4068–4076.
[27]
Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24: 79–88.
Izaki K, Matsuhashi M, Strominger JL (1966) Glycopeptide transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Proc Natl Acad Sci U S A 55: 656–663.
[30]
van Heijenoort Y, Leduc M, Singer H, van Heijenoort J (1987) Effects of moenomycin on Escherichia coli. J Gen Microbiol 133: 667–674.
[31]
Weidenmaier C, Kokai-Kun JF, Kulauzovic E, Kohler T, Thumm G, et al. (2008) Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. Int J Med Microbiol 298: 505–513.
[32]
Leibig M, Krismer B, Kolb M, Friede A, G?tz F, et al. (2008) Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol 74: 1316–1323.
[33]
Sambrook J, Fritsch , F E, Maniatis T (1989) Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
[34]
L?fblom J, Kronqvist N, Uhlen M, Stahl S, Wernerus H (2007) Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. J Appl Microbiol 102: 736–747.
[35]
Pinho MG, Errington J (2003) Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 50: 871–881.