全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Evidence That Putrescine Modulates the Higher Plant Photosynthetic Proton Circuit

DOI: 10.1371/journal.pone.0029864

Full-Text   Cite this paper   Add to My Lib

Abstract:

The light reactions of photosynthesis store energy in the form of an electrochemical gradient of protons, or proton motive force (pmf), comprised of electrical (Δψ) and osmotic (ΔpH) components. Both components can drive the synthesis of ATP at the chloroplast ATP synthase, but the ΔpH component also plays a key role in regulating photosynthesis, down-regulating the efficiency of light capture by photosynthetic antennae via the qE mechanism, and governing electron transfer at the cytochrome b6f complex. Differential partitioning of pmf into ΔpH and Δψ has been observed under environmental stresses and proposed as a mechanism for fine-tuning photosynthetic regulation, but the mechanism of this tuning is unknown. We show here that putrescine can alter the partitioning of pmf both in vivo (in Arabidopsis mutant lines and in Nicotiana wild type) and in vitro, suggesting that the endogenous titer of weak bases such as putrescine represents an unrecognized mechanism for regulating photosynthetic responses to the environment.

References

[1]  Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9: 349–357.
[2]  Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8: 27–32.
[3]  Li X-P, Bj?rkman O, Shih C, Grossman AR, Rosequist M, et al. (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395.
[4]  Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, et al. (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436: 134–137.
[5]  Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, et al. (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450: 575–578.
[6]  Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456: 5–26.
[7]  Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767: 1233–1244.
[8]  Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155: 70–78.
[9]  Cruz JA, Sacksteder C, Kanazawa A, Kramer DM (2001) Contribution of electric field Δψ to steady-state transthylakoid proton motive force in vitro and in vivo. Control of pmf parsing into Δψ and ΔpH by counterion fluxes. Biochemistry 40: 1226–1237.
[10]  Avenson TJ, Cruz JA, Kramer DM (2004) Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci USA 101: 5530–5535.
[11]  Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005) Regulating the proton budget of higher plant photosynthesis. Proc Nat Acad Sci USA 102: 9709–9713.
[12]  Ioannidis NE, Sfichi L, Kotzabasis K (2006) Putrescine stimulates chemiosmotic ATP synthesis. Biochim Biophys Acta 1757: 821–828.
[13]  Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101: 9909–9914.
[14]  Kasukabe Y, He L, Nada K, Misawa S, Ihara I, et al. (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45: 712–722.
[15]  Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228: 367–381.
[16]  Mehta RA, Cassol T, Li N, Ali N, Handa AK, et al. (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20: 613–618.
[17]  Gerner EM, Meyskens LF (2004) Polyamines and cancer. Old molecules new understanding. Nat Rev Cancer 4: 781–792.
[18]  Crofts A (1967) Amine uncoupling of energy transfer in chloroplasts. I. In relation to ammonium ion uptake. J Biol Chem 242: 3352–3359.
[19]  Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around Photosystem I (hcef) Involving the NADPH dehydrogenase complex. Plant Cell 22: 221–233.
[20]  Kotzabasis K, Christakis-Hampsas MD, Roubelakis-Angelakis KA (1993) A narrow bore HPLC method for the identification and quantitation of free, conjugated and bound polyamines. Anal Biochem 214: 484–489.
[21]  Urano K, Tokunori H, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579: 1557–1564.
[22]  Baker N, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30: 1107–1125.
[23]  De Robertis A, De Stefano C, Foti C, Giuffre O, Sammartano S (2001) Thermodynamic parameters for the binding of inorganic and organic anions by biogenic polyammonium cations. Talanta 54: 1135–1142.
[24]  Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60: 151–163.
[25]  Guarino L, Cohen SS (1979) Uptake and accumulation of putrescine and its lethality in Anacystis nidulans. Proc Natl Acad Sci USA 76: 3184–3188.
[26]  Gaensslen RE, McCarty RE (1971) Amine uptake in chloroplasts. Arch Biochem Biophys 147: 55–65.
[27]  Schuldiner S, Rotternberg H, Avron M (1972) Determination of ΔpH in chloroplasts. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur J Biochem 25: 64–70.
[28]  Galston AW (2001) Plant biology—retrospect and prospect. Curr Sci 80: 150–152.
[29]  Borrell A, Culianez-Macia F, Altabella T, Besford RT, Flores D, et al. (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109: 771–776.
[30]  Malmberg RL, Watson MB, Galloway GL, Yua W (1998) Molecular genetic analyses of plant polyamines. Crit Rev Plant Sci 17: 199–224.
[31]  Bortolotti C, Cordeiro A, Alcázar R, Borrell A, Culia?ez-Macià FA, et al. (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120: 84–92.
[32]  Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, et al. (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32: 209–219.
[33]  Robinson SP, Downton WJS, Millhouse JA (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol 73: 238–242.
[34]  Bagni N, Ruiz-Carrasco K, Franceschetti M, Fornalè S, Fornasiero RB, et al. (2006) Polyamine metabolism and biosynthetic gene expression in Arabidopsis thaliana under salt stress. Plant Physiol Biochem 44: 776–786.
[35]  Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, et al. (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28: 547–552.
[36]  Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, et al. (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Comm 313: 369–375.
[37]  Sacksteder CA, Kramer DM (2000) A diffused-optics flash kinetic spectrophotometer (DOFS) for measurements of absorbance changes in intact plants in the steady-state. Photosynth Res 56: 103–112.
[38]  Zhang RCJ, Kramer DM, Magallanes-Lundback ME, Dellapenna D, Sharkey TD (2009) Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. Plant Cell Environ 32: 1538–1547.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133