[1] | Nyffenegger RM, Penner RM (1997) Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991. Chem Rev 97: 1195–1230.
|
[2] | Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: A review. J Vac Sci Technol B 23: 877–894.
|
[3] | Mamin HJ, Guethner PH, Rugar D (1990) Atomic emission from a gold scanning-tunnelingmicroscope tip. Phys Rev Lett 65: 2418–2421.
|
[4] | Tsong TT (1991) Effects of an electric field in atomic manipulations. Phys Rev B 44: 13703–13710.
|
[5] | Hsiao GS, Penner RM, Kingsley J (1994) Deposition of metal nanostructures onto si(111) surfaces by field evaporation in a scanning tunneling microscope. Appl Phys Lett 64: 1350–1352.
|
[6] | Zhang HL, Li HL, Liu ZF (2002) Study on the delicate nanostructures formed on au(111) by scanning tunneling microscopy (stm). Microelectronic engineering 63: 381–389.
|
[7] | Hu X, von Blackenhagen P (1998) Generation and analysis of nano-scale al islands by stm. Appl Phys A 66: 707–710.
|
[8] | Mascher C, Damaschke B (1994) Creation of nanometer-scale structures with the scanning tunneling microscope. J Appl Phys 75: 5438–5440.
|
[9] | Bessho K, Hashimoto S (1994) Fabricating nanoscale structures on au surface with scanning tunneling microscope. Appl Phys Lett 65: 2142–2144.
|
[10] | Park JY, Phaneuf RJ (2002) Polarity dependence in pulsed scanning tunneling microscopy fabrication and modification of metal nanodots on silicon. J Appl Phys 92: 2139–2143.
|
[11] | Fujita D, Kumakura T (2003) Reproducible fabrication of metallic silver nanostructures on a si(111)-(7×7) surface by tip-material transfer of a scanning tunneling microscope. Appl Phys Lett 82: 2329–2331.
|
[12] | Ohi A, Mizutani W, Tokumoto H (1995) Nanometer-scale modifications of gold surfaces by scanning tunneling microscope. J Vac Sci Technol B 13: 1252–1256.
|
[13] | Girard C, Joachim C, Chavy C, Sautet P (1993) The electric field under a STM tip apex: implications for adsorbate manipulation. Surf Sci 282: 400–410.
|
[14] | Mayer TM, Houston JE, Franklin GE, Erchak AA, Michalske TA (1999) Electric field induced surface modification of au. J Appl Phys 85: 8170–8177.
|
[15] | Mendez J, Gomez-Herrero J, Pascual JI, Saenz JJ, Soler JM, et al. (1996) Diffusion of atoms on au(111) by electric field gradient in scanning tunneling microscopy. J Vac Sci Technol B 14: 1145–1148.
|
[16] | Naitoh Y, Suga H, Horikawa M (2011) Physical model for high-to-low resistive switching of gold nanogap junction. Jpn J Appl Phys 50: 06GF10.
|
[17] | Kondo S, Heike S, Lutwyche M, Wada Y (1995) Surface modification mechanism of materials with scanning tunneling microscope. J Appl Phys 78: 155–160.
|
[18] | Tsong TT (1990) Atom-probe field ion microscopy: field ion emission and surfaces and interfaces at atomic resolution. Cambridge University Press.
|
[19] | Kürpick U, Kara A, Rahman TS (1997) Role of lattice vibrations in adatom diffusion. Phys Rev Lett 78: 1086–1089.
|
[20] | Tsong TT, Kellogg G (1975) Direct observation of directional walk of single adatoms and adatom polarizability. Phys Rev B 12: 1343–1353.
|
[21] | Israelachvili JN (1992) Intermolecular and Surface Forces. Academic press limited.
|
[22] | Erts D, Lohmus A, Lohmus R, Olin H, Pokropivny AV, et al. (2002) Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope. Appl Surf Sci 188: 460–466.
|
[23] | Pascual JI, Mendez J, Gomez-Herrero J, Baro AM, Garcia N, et al. (1993) Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys Rev Lett 71: 1852–1855.
|
[24] | Chang TC, Chang CS, Lin HN, Tsong TT (1995) Creation of nanostructures on gold surfaces in nonconducting liquid. Appl Phys Lett 67: 903–905.
|
[25] | Kondo S, Lutwyche M, Wada Y (1993) Nanofabrication of layered materials with the scanning tunneling microscope. Appl Surf Sci 75: 39–44.
|
[26] | Kittel C (2005) Introduction to Solid State Physics - 8th ed. John Wiley and Sons.
|
[27] | Linder B, Kromhout RA (1976) Dipoles induced by physical adsorption. Phys Rev B 13: 1532–1535.
|
[28] | Grossel P, Vigoureux JM, van Labeke D (1983) Static dipole moment of an atom or a centrocymmetric molecule near a perfect metallic surface. Phys Rev A 28: 524–531.
|
[29] | Erts D, Olin H, Ryen L, Olsson E, Th?len A (2000) Maxwell and sharwin conductance in gold point contacts investigated using tem-stm. Phys Rev B 61: 12725–12727.
|
[30] | Podgornik R, Naji A (2006) Electrostatic disorder-induced interactions in inhomogenous dielectrics. Europhys Lett 74: 712.
|
[31] | Naji A, Dean DS, Sarabadani J, Horgan RR, Podgornik R (2010) Fluctuation-induced interaction between randomly charged dielectrics. Phys Rev Lett 104: 060601.
|
[32] | Mordehai D, Rabkin E, Srolovitz DJ (2011) Pseudoelastic deformation during nanoscale adhesive contact formation. Phys Rev Lett 107: 096101.
|
[33] | Svensson K, Jompol Y, Olin H, Olsson E (2003) Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev Sci Instr 74: 4945–4947.
|
[34] | Nafari A, Angenete J, Svensson K, Sanz-Velasco A, Olin H (2011) Combining scanning probe microscopy and transmission electron microscopy. In: Bhushan B, editor. Scanning Probe Microscopy in Nanoscience and Nanotechnology 2. Springer Berlin Heidelberg: NanoScience and Technology. pp. 59–99.
|
[35] | Hummelg?rd M, Zhang R, Nilsson HE, Olin H (2011) Electrical sintering of silver nanopartikle ink studied by in-situ tem probing. PloS ONE 6: e17209.
|
[36] | Allen ML, Aronniemi M, Mattila T, Alastalo A, Ojanper? K, et al. (2008) Electrical sintering of nanoparticle structures. Nanotechnology 19: 175201.
|