The Genetic screened homeobox 2 (Gsx2) transcription factor is required for the development of olfactory bulb (OB) and striatal neurons, and for the regional specification of the embryonic telencephalon. Although Gsx2 is expressed abundantly by progenitor cells in the ventral telencephalon, its precise function in the generation of neurons from neural stem cells (NSCs) is not clear. Similarly, the role of Gsx2 in regulating the self-renewal and multipotentiality of NSCs has been little explored. Using retroviral vectors to express Gsx2, we have studied the effect of Gsx2 on the growth of NSCs isolated from the OB and ganglionic eminences (GE), as well as its influence on the proliferation and cell fate of progenitors in the postnatal mouse OB. Expression of Gsx2 reduces proliferation and the self-renewal capacity of NSCs, without significantly affecting cell death. Furthermore, Gsx2 overexpression decreases the differentiation of NSCs into neurons and glia, and it maintains the cells that do not differentiate as cycling progenitors. These effects were stronger in GESCs than in OBSCs, indicating that the actions of Gsx2 are cell-dependent. In vivo, Gsx2 produces a decrease in the number of Pax6+ cells and doublecortin+ neuroblasts, and an increase in Olig2+ cells. In summary, our findings show that Gsx2 inhibits the ability of NSCs to proliferate and self-renew, as well as the capacity of NSC-derived progenitors to differentiate, suggesting that this transcription factor regulates the quiescent and undifferentiated state of NSCs and progenitors. Furthermore, our data indicate that Gsx2 negatively regulates neurogenesis from postnatal progenitor cells.
References
[1]
Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134: 3771–3780.
[2]
Mendez-Gomez HR, Vergano-Vera E, Abad JL, Bulfone A, Moratalla R, et al. (2011) The T-box brain 1 (Tbr1) transcription factor inhibits astrocyte formation in the olfactory bulb and regulates neural stem cell fate. Mol Cell Neurosci 46: 108–121.
[3]
Roman-Trufero M, Mendez-Gomez HR, Perez C, Hijikata A, Fujimura YI, et al. (2009) Maintenance of Undifferentiated State and Self-Renewal of Embryonic Neural Stem Cells by Polycomb Protein Ring1B. Stem Cells 27: 1559–1570.
[4]
Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol 134: 287–304.
[5]
Kroll TT, O'Leary DD (2005) Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc Natl Acad Sci U S A 102: 7374–7379.
[6]
Nikoletopoulou V, Plachta N, Allen ND, Pinto L, Gotz M, et al. (2007) Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem Cell 1: 529–540.
[7]
Vergano-Vera E, Yusta-Boyo MJ, de Castro F, Bernad A, de Pablo F, et al. (2006) Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells. Development 133: 4367–4379.
[8]
Stenman J, Toresson H, Campbell K (2003) Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J Neurosci 23: 167–174.
[9]
Waclaw RR, Wang B, Pei Z, Ehrman LA, Campbell K (2009) Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates. Neuron 63: 451–465.
[10]
Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, et al. (2007) A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27: 6878–6891.
[11]
Bovetti S, Peretto P, Fasolo A, De Marchis S (2007) Spatio-temporal specification of olfactory bulb interneurons. J Mol Histol 38: 563–569.
[12]
Cave JW, Baker H (2009) Dopamine systems in the forebrain. Adv Exp Med Biol 651: 15–35.
[13]
Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22: 629–634.
[14]
Ventura RE, Goldman JE (2007) Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. J Neurosci 27: 4297–4302.
[15]
Luskin MB (1998) Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. J Neurobiol 36: 221–233.
[16]
Giachino C, Taylor V (2009) Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb. Eur J Neurosci 30: 9–24.
[17]
Lledo PM, Merkle FT, Alvarez-Buylla A (2008) Origin and function of olfactory bulb interneuron diversity. Trends Neurosci 31: 392–400.
[18]
Vergano-Vera E, Mendez-Gomez HR, Hurtado-Chong A, Cigudosa JC, Vicario-Abejon C (2009) Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells. Neuroscience 162: 39–54.
[19]
Hsieh-Li HM, Witte DP, Szucsik JC, Weinstein M, Li H, et al. (1995) Gsh-2, a murine homeobox gene expressed in the developing brain. Mech Dev 50: 177–186.
[20]
Szucsik JC, Witte DP, Li H, Pixley SK, Small KM, et al. (1997) Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev Biol 191: 230–242.
[21]
Carney RSE, Cocas LA, Hirata T, Mansfield K, Corbin JG (2009) Differential regulation of telencephalic pallial-subpallial boundary patterning by pax6 and gsh2. Cereb Cortex 19: 745–759.
[22]
Toresson H, Potter SS, Campbell K (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127: 4361–4371.
[23]
Yun K, Potter S, Rubenstein JL (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128: 193–205.
[24]
Corbin JG, Gaiano N, Machold RP, Langston A, Fishell G (2000) The Gsh2 homeodomain gene controls multiple aspects of telencephalic development. Development 127: 5007–5020.
[25]
Toresson H, Campbell K (2001) A role for Gsh1 in the developing striatum and olfactory bulb of Gsh2 mutant mice. Development 128: 4769–4780.
[26]
Xu Q, Guo L, Moore H, Waclaw RR, Campbell K, et al. (2010) Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates. Neuron 65: 328–340.
[27]
Yun K, Garel S, Fischman S, Rubenstein JLR (2003) Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia. J Comp Neurol 461: 151–165.
[28]
Wang B, Waclaw RR, Allen ZJ, Guillemot F, Campbell K (2009) Ascl1 is a required downstream effector of Gsx gene function in the embryonic mouse telencephalon. Neural Dev 4: 5.
[29]
Pei Z, Wang B, Chen G, Nagao M, Nakafuku M, et al. (2011) Homeobox genes Gsx1 and Gsx2 differentially regulate telencephalic progenitor maturation. Proc Natl Acad Sci U S A.
[30]
Teissier A, Waclaw RR, Griveau A, Campbell K, Pierani A (2011) Tangentially Migrating Transient Glutamatergic Neurons Control Neurogenesis and Maintenance of Cerebral Cortical Progenitor Pools. Cereb Cortex. In press.
[31]
Cools J, Mentens N, Odero MD, Peeters P, Wlodarska I, et al. (2002) Evidence for position effects as a variant ETV6-mediated leukemogenic mechanism in myeloid leukemias with a t(4;12)(q11–q12;p13) or t(5;12)(q31;p13). Blood 99: 1776–1784.
[32]
Brill MS, Snapyan M, Wohlfrom H, Ninkovic J, Jawerka M, et al. (2008) A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J Neurosci 28: 6439–6452.
[33]
Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, et al. (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8: 865–872.
[34]
Hack MA, Sugimori M, Lundberg C, Nakafuku M, G?tz M (2004) Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol Cell Neurosci 25: 664–678.
[35]
Hurtado-Chong A, Yusta-Boyo MJ, Vergano-Vera E, Bulfone A, de Pablo F, et al. (2009) IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci 30: 742–755.
[36]
Englund C, Fink A, Lau C, Pham D, Daza RAM, et al. (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25: 247–251.
[37]
Miyoshi G, Butt SJB, Takebayashi H, Fishell G (2007) Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci 27: 7786–7798.
[38]
Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23: 257–271.
[39]
Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20: 233–243.
[40]
Jensen JB, Bjorklund A, Parmar M (2004) Striatal neuron differentiation from neurosphere-expanded progenitors depends on Gsh2 expression. J Neurosci 24: 6958–6967.
[41]
Urban N, Martin-Ibanez R, Herranz C, Esgleas M, Crespo E, et al. (2010) Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling. Neural Dev 5: 21.
[42]
Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41: 683–686.
[43]
Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, et al. (2010) Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7: 163–173.
[44]
Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, et al. (2010) Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7: 78–89.
[45]
Young KM, Fogarty M, Kessaris N, Richardson WD (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27: 8286–8296.
[46]
Von Ohlen T, Syu LJ, Mellerick DM (2007) Conserved properties of the Drosophila homeodomain protein, Ind. Mech Dev 124: 925–934.
[47]
Cocas LA, Georgala PA, Mangin JM, Clegg JM, Kessaris N, et al. (2011) Pax6 is required at the telencephalic pallial-subpallial boundary for the generation of neuronal diversity in the postnatal limbic system. J Neurosci 31: 5313–5324.
[48]
Sun Y, Hu J, Zhou L, Pollard SM, Smith A (2011) Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. J Cell Sci 124: 1867–1877.
[49]
Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317: 381–384.