全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model

DOI: 10.1371/journal.pone.0029941

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant ‘targeting agent’ that binds a toxin at two unique sites and a ‘clearing Ab’ that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab VH (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit.

References

[1]  Rainey GJ, Young JA (2004) Antitoxins: novel strategies to target agents of bioterrorism. Nature reviews Microbiology 2: 721–726.
[2]  Casadevall A (2002) Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg Infect Dis 8: 833–841.
[3]  Nowakowski A, Wang C, Powers DB, Amersdorfer P, Smith TJ, et al. (2002) Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc Natl Acad Sci U S A 99: 11346–11350.
[4]  Mukherjee J, Chios K, Fishwild D, Hudson D, O'Donnell S, et al. (2002) Human Stx2-specific monoclonal antibodies prevent systemic complications of Escherichia coli O157:H7 infection. Infect Immun 70: 612–619.
[5]  Mohamed N, Clagett M, Li J, Jones S, Pincus S, et al. (2005) A high-affinity monoclonal antibody to anthrax protective antigen passively protects rabbits before and after aerosolized Bacillus anthracis spore challenge. Infect Immun 73: 795–802.
[6]  Walker K (2010) Interscience Conference on Antimicrobial Agents and Chemotherapy - 50th Annual Meeting - Research on Promising New Agents: Part 1. IDrugs 13: 743–745.
[7]  Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15: 203–234.
[8]  Davies KA, Robson MG, Peters AM, Norsworthy P, Nash JT, et al. (2002) Defective Fc-dependent processing of immune complexes in patients with systemic lupus erythematosus. Arthritis Rheum 46: 1028–1038.
[9]  Johansson AG, Lovdal T, Magnusson KE, Berg T, Skogh T (1996) Liver cell uptake and degradation of soluble immunoglobulin G immune complexes in vivo and in vitro in rats. Hepatology 24: 169–175.
[10]  Lovdal T, Andersen E, Brech A, Berg T (2000) Fc receptor mediated endocytosis of small soluble immunoglobulin G immune complexes in Kupffer and endothelial cells from rat liver. J Cell Sci 113(Pt 18): 3255–3266.
[11]  Arnon SS, Schechter R, Maslanka SE, Jewell NP, Hatheway CL (2006) Human botulism immune globulin for the treatment of infant botulism. N Engl J Med 354: 462–471.
[12]  Centers for Disease Control (2010) Investigational heptavalent botulinum antitoxin (HBAT) to replace licensed botulinum antitoxin AB and investigational botulinum antitoxin E. MMWR Morbidity and mortality weekly report 59: 299.
[13]  Sobel J (2005) Botulism. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 41: 1167–1173.
[14]  Pless DD, Torres ER, Reinke EK, Bavari S (2001) High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type A. Infect Immun 69: 570–574.
[15]  Meng Q, Li M, Silberg MA, Conrad F, Bettencourt J, et al. (2011) Domain-based assays of individual antibody concentrations in an oligoclonal combination targeting a single protein. Anal Biochem. In press. doi:10.1016/j.ab.2011.09.030.
[16]  Adekar SP, Takahashi T, Jones RM, Al-Saleem FH, Ancharski DM, et al. (2008) Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain. PLoS ONE 3: e3023.
[17]  Mazuet C, Dano J, Popoff MR, Creminon C, Volland H (2010) Characterization of botulinum neurotoxin type A neutralizing monoclonal antibodies and influence of their half-lives on therapeutic activity. PLoS ONE 5: e12416.
[18]  Sepulveda J, Mukherjee J, Tzipori S, Simpson LL, Shoemaker CB (2010) Efficient serum clearance of botulinum neurotoxin achieved using a pool of small antitoxin binding agents. Infect Immun 78: 756–763.
[19]  van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, et al. (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431: 37–46.
[20]  Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, et al. (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11: 500–515.
[21]  Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, et al. (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. Embo J 17: 3512–3520.
[22]  Gibbs WW (2005) Nanobodies. Sci Am 293: 78–83.
[23]  Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z (2011) Nanobody; an old concept and new vehicle for immunotargeting. Immunological investigations 40: 299–338.
[24]  Pluckthun A, Pack P (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology : an international journal of immunological engineering 3: 83–105.
[25]  Cheng LW, Stanker LH, Henderson TD 2nd, Lou J, Marks JD (2009) Antibody protection against botulinum neurotoxin intoxication in mice. Infect Immun 77: 4305–4313.
[26]  Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, et al. (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284: 3273–3284.
[27]  Hey T, Fiedler E, Rudolph R, Fiedler M (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23: 514–522.
[28]  Webb RP, Smith TJ, Wright P, Brown J, Smith LA (2009) Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 27: 4490–4497.
[29]  Maass DR, Harrison GB, Grant WN, Shoemaker CB (2007) Three surface antigens dominate the mucosal antibody response to gastrointestinal L3-stage strongylid nematodes in field immune sheep. Int J Parasitol 37: 953–962.
[30]  Tremblay JM, Kuo CL, Abeijon C, Sepulveda J, Oyler G, et al. (2010) Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding agents and inhibitors of Clostridium botulinum neurotoxin (BoNT) proteases. Toxicon 56(6): 990–998.
[31]  Skaper SD, Adler R, Varon S (1979) A procedure for purifying neuron-like cells in cultures from central nervous tissue with a defined medium. Dev Neurosci 2: 233–237.
[32]  Eubanks LM, Silhar P, Salzameda NT, Zakhari JS, Xiaochuan F, et al. (2010) Identification of a Natural Product Antagonist against the Botulinum Neurotoxin Light Chain Protease. ACS Med Chem Lett 1(6): 268–272.
[33]  Pearce LB, Borodic GE, First ER, MacCallum RD (1994) Measurement of botulinum toxin activity: evaluation of the lethality assay. Toxicol Appl Pharmacol 128: 69–77.
[34]  Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB (2007) Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods 324: 13–25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133