全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Triple-Isotope Approach to Predict the Breeding Origins of European Bats

DOI: 10.1371/journal.pone.0030388

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ13C and δ15N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe.

References

[1]  Eisentraut M (1943) Zehn Jahre Fledermausberingung. Zool Anz 144: 20–32.
[2]  Hutterer R, Ivanova T, Meyer-Cords C, Rodrigues L (2005) Bat migrations in Europe: a review of banding data and literature. Bonn: German Agency for Nature Conservation. 162 p.
[3]  Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. TRENDS Ecol Evol 17: 76–83.
[4]  Dietz C, Dietz I, Ivanova T, Siemers BM (2006) Effects of forearm bands on horseshoe bats (Chiroptera: Rhinolophidae). Acta Chiropterol 8: 523–535.
[5]  Ellison LE (2008) Summary and analysis of the U.S. Government Bat Banding Program. United States Geological Survey Open-File Report 1363: 1–117.
[6]  Holland RA, Wikelski M (2009) Studying the migratory behavior of individual bats: current techniques and future directions. J Mammal 90: 1324–1329.
[7]  Popa-Lisseanu AG, Voigt CC (2009) Bats on the move. J Mammal 90: 1283–1289.
[8]  Ibá?ez C, Guillén A, Agirre-Mendi PT, Juste J, Schreuer G, et al. (2009) Sexual segregation in Iberian noctule bats. J Mammal 90: 235–243.
[9]  Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314–326.
[10]  Hobson KA (2005) Using stable isotopes to trace long-distance dispersal in birds and other taxa. Divers Distrib 11: 157–164.
[11]  Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, et al. (2008) Hydrogen and oxygen isotope ratios in human hair are related to geography. PNAS 105: 2788–2793.
[12]  Craig H (1961) Isotopic variations in meteoric waters. Science 133: 1702–1703.
[13]  Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39: 1299.
[14]  Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143: 337–348.
[15]  Chamberlain CP, Blum JD, Holmes RT, Feng XH, Sherry TW, et al. (1997) The use of isotope tracers for identifying populations of migratory birds. Oecologia 109: 132–141.
[16]  Hobson KA, Wassenaar LI (1997) Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109: 142–148.
[17]  Hobson KA, Wassenaar LI, Taylor OR (1999) Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch butterflies in eastern North America. Oecologia 120: 397–404.
[18]  Wassenaar LI, Hobson KA (2000) Stable-carbon and hydrogen isotope ratios reveal breeding origins of red-winged blackbirds. Ecol Applic 10: 911–916.
[19]  Hobson KA, Bowen GJ, Wassenaar LI, Ferrand Y, Lormee H (2004) Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141: 477–488.
[20]  Wassenaar LI, Hobson KA (1998) Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc Nat Acad Sci 95: 15436–15439.
[21]  Pérez GE, Hobson KA (2007) Feather deuterium measurements reveal origins of migratory western loggerhead shrikes (Lanius ludovicianus excubitorides) wintering in Mexico. Divers Distrib 13: 166–171.
[22]  Hobson KA, Wunder MB, Van Wilgenburg SL, Clark RG, Wassenaar LI (2009) A method for investigating population declines of migratory birds using stable isotopes: origins of harvested lesser scaup in North America. PLoS ONE 4: e7915.
[23]  Hobson KA, Lormée H, Van Wilgenburg SL, Wassenaar LI, Boutin JM (2009) Stable isotopes (δD) delineate the origins and migratory connectivity of harvested animals: the case of European woodpigeons. J Appl Ecol 46: 572–581.
[24]  Cryan PM, Bogan MA, Rye RO, Landis GP, Kester CL (2004) Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. J Mammal 85: 995–1001.
[25]  Tiunov MP, Makarikova TA (2007) Seasonal molting in Myotis petax (Chiroptera) in the Russian Far East. Acta Chiropterol 9: 538–541.
[26]  Britzke ER, Loeb SC, Hobson KA, Romanek CS, Vonhof MJ (2009) Using hydrogen isotopes to assign origins of bats in the eastern United States. J Mammal 90: 743–751.
[27]  Hebert CE, Wassenaar LI (2005) Feather stable isotopes in western North American waterfowl: spatial patterns, underlying factors, and management applications. Wildl Soc Bull 33: 92–102.
[28]  Clark RG, Hobson KA, Wassenaar (2006) Geographic variation in the isotopic (δD, δ13C, δ15N, δ34S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. Can J Zool 84: 1395–1401.
[29]  Ibá?ez C, García-Mudarra JL, Ruedi M, Stadelmann B, Juste J (2006) The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol 8: 277–297.
[30]  Pérez-Jordá JL (1994) Ecología del murciélago hortelano, Eptesicus serotinus, en Andalucía. 164 p. PhD Dissertation, University of Seville.
[31]  Juste J, Bilgin R, Mu?oz J, Ibá?ez C (2009) Mitochondrial DNA signatures at different spatial scales: from the effects of the Straits of Gibraltar to population structure in the meridional serotine bat (Eptesicus isabellinus). Heredity 103: 178–187.
[32]  Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Health Stud 39: 211–217.
[33]  Wassenaar LI, Hobson KA (2000) Improved method for determining the stable-hydrogen isotopic composition (δD) of complex organic materials of environmental interest. Environ Sci Technol 34: 2354–2360.
[34]  Wassenaar LI (2008) An introduction to light stable isotopes for use in terrestrial animal migration studies. In: Hobson KA, Wassenaar LI, editors. Tracking animal migration with stable isotopes. San Diego: Elsevier Inc. pp. 21–44.
[35]  Bowen GJ (2010) Waterisotopes.org. Gridded maps of the isotopic composition of meteoric precipitation. Available: http://www.waterisotopes.org. Accessed 2011 Dec 22.
[36]  R Development Core Team (2009) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org.
[37]  Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in Ecology with R. New York: Springer Science+Business Media, LLC. 574 p.
[38]  Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer Series in Statistics. New York: Springer-Verlag. 570 p.
[39]  Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sunderland, MA: Sinauer Associates, Inc. Publishers. 510 p.
[40]  Kelly JF, Atudorei V, Sharp ZD, Finch DM (2002) Insights into Wilson's Warbler migration from analyses of hydrogen stable-isotope ratios. Oecologia 130: 216–221.
[41]  Dietz C, von Helversen O, Nill D (2007) Handbuch der Flederm?use Europas und Nordwestafrikas. Stuttgart: Franckh-Kosmos Verlag. 399 p.
[42]  Suits ND, Denning AS, Berry JA, Still CJ, Kaduk J, et al. (2005) Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeoch Cycl 19: GB1017. doi:10.1029/2003GB002141.
[43]  Liu X, Wang G (2010) Measurements of nitrogen isotope composition of plants and surface soils along the altitudinal transect of the eastern slope of Mount Gongga in southwest China. Rapid Comm Mass Spectrom 24: 3063–3071.
[44]  Hobson KA (2008) Applying isotopic methods to track animal movements. In: Hobson KA, Wassenaar LI, editors. Tracking animal migration with stable isotopes. San Diego: Elsevier Inc. pp. 45–78.
[45]  Birchall J, O'Connell TC, Heaton THE, Hedges REM (2005) Hydrogen isotope ratios in animal body protein reflect trophic level. J Anim Ecol 74: 877–881.
[46]  Fraser KC, McKinnon EA, Diamond AW (2010) Migration, diet, or molt? Interpreting stable-hydrogen isotope values in Neotropical bats. Biotropica 42: 512–517.
[47]  Erzberger A, Popa-Lisseanu AG, Lehmann GUC, Voigt CC (in press) Potential and limits in detecting altitudinal movements of bats using stable hydrogen isotope ratios of fur keratin. Acta Chiropterol.
[48]  Chamberlain CP, Bensch S, Feng X, ?kesson S, Andersson T (2000) Stable isotopes examined across a migratory divide in Scandinavian willow warblers (Phylloscopus trochilus trochilus and Phylloscopus trochilus acredula) reflect their African winter quarters. Proc R Soc Lond B 267: 43–48.
[49]  Pain DF, Green RE, Gie?ing B, Kozulin A, Poluda A, et al. (2004) Using stable isotopes to investigate migratory connectivity of the globally threatened aquatic warbler Acrocephalus paludicola. Oecologia 138: 168–174.
[50]  Reichlin TS, Hobson KA, Wassenaar LI, Schaub M, Tolkmitt D, et al. (2010) Migratory connectivity in a declining bird species: using feather isotopes to inform demographic modelling. Divers Distrib 16: 643–654.
[51]  Wassenaar LI, Hobson KA (2001) A stable-isotope approach to delineate geographical catchment areas of avian migration monitoring stations in North America. Environ Sci Technol 35: 1845–1850.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133