A nearly complete genome sequence of Candidatus ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that Ca. ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO2 fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of Ca. ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of Ca. ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H2-dependent acetogens and methanogenes living in hydrothermal environments.
References
[1]
Nisbert EG, Sleep NH (2001) The habitat and nature of early life. Nature 409: 1083–1091.
[2]
Boussau B, Blanquuart S, Necsulea A, Lartillot N, Gouy M (2008) Parallel adaptation to high temperatures in the Archaeaneon. Nature 456: 942–946.
[3]
Corliss JB, Baross JA, Hoffmann SE (1981) A hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta 4: 56–69.
[4]
Baross JA, Hoffmann SE (1985) Submarine hydrothermal vents and associated gradient enviroments as sites for the origin and evolution of life. Orig Life Evol Biosph 15: 327–345.
[5]
Kelley DS, Karson JA, Früh-Green GL, Yoetger DR, Shank TM, et al. (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307: 1428–1434.
[6]
Proskurowski G, Lilley MD, Kelly DS, Olson EJ (2006) Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermomether. Chem Geol 229: 331–343.
[7]
Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, et al. (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8: 269–282.
[8]
Takai K, Nakamura K, Suzuki K, Inagaki F, Nealson KH, et al. (2006) Ultramafics-Hydrothermalism-Hydrogenesis?-HyperSLiME(UltraH3) linkage: a key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems. Paleontological Res 10: 269–282.
[9]
Shibuya T, Komiya T, Nakamura K, Takai K, Maruyama S (2010) Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrian Res 182: 230–238.
[10]
W?chtersh?user G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52: 452–484.
[11]
Martin W, Russell M (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans R Soc B 362: 1887–1926.
[12]
Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57: 369–94.
[13]
Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180: 366–376.
[14]
Teske A, Hinrichs KA, Edgcomb V, Gomez AV, Kysela D, et al. (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68: 1994–2007.
[15]
Scott MB, Saito JA, Crowe MA, Dunfield PF, Hou S, et al. (2008) Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand. J Geophys Res 113: B08S06, 9PP.
[16]
Kato S, Kobayshi C, Kakegawa T, Yamagishi A (2009) Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough. Environ Microbiol 11: 2094–2111.
[17]
Tobler DJ, Benning LG (2011) Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15: 473–485.
[18]
Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, et al. (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13: 447–459.
[19]
Hirayama H, Takai K, Inagaki F, Yamato Y, Suzuki M, et al. (2005) Bacterial community shifts along a subsurface geothermal water stream in a Japanese gold mine. Extremophiles 9: 169–184.
[20]
Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, et al. (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68: 3046–3054.
[21]
Nunoura T, Hirayama H, Takami H, Oida H, Nishi S, et al. (2005) Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ Microbiol 7: 1967–1984.
[22]
Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, et al. (2011) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39: 3204–3223.
[23]
Wu M, Eisen JA (2008) A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9: R151.
[24]
Kimura H, Sugihara M, Kato K, Hanada S (2006) Selective Phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments. Appl Environ Microbiol 72: 21–27.
[25]
Martin W, Baross J, Kelley D, Russell M (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6: 805–814.
[26]
Say RF, Fuchs G (2010) Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenesis enzyme. Nature 464: 1077–1081.
[27]
Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69: 6345–6353.
[28]
Kaster AK, Moll J, Parey K, Thauer R (2011) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci USA 108: 2981–2986.
[29]
Biegel E, Schmidt S, González JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68: 613–634.
[30]
Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci USA 107: 18138–18142.
[31]
Mulkidjanian AY, Galperin MY, Makarova KS, Wolf Y, Koonin EV (2008) Evolutionary primacy of sodium bioenergetics. Biology Direct 2008, 3: 13.
[32]
Toei M, Gerle C, Nakano M, Tani K, Gyobu N, et al. (2007) Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proc Natl Acad Sci USA 104: 20256–20261.
[33]
Brioukhanov AL, Netrusov AI (2004) Catalase and superoxide dismutase: properties, and physiological role in cells of strict anaerobes. Biochemistry (Moscow) 69: 949–962.
[34]
Pierce E, Xie G, Barabote RD, Saunders E, Han CS, et al. (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoacetica). Environ Microbiol 10: 2550–2573.
[35]
Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, et al. (2005) Life in hot carbon monoxide: The complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLos Genetics 1: e65.
[36]
Thauer RT (2007) A fifth pathway of carbon fixation. Science 318: 1732–1733.
[37]
Torre JR, Walker CB, Ingalls AE, K?nneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10: 810–818.
[38]
Sakiyama T, Takami H, Ogasawara N, Kuhara S, Kozuki T, et al. (2000) An automated system for genome analysis to support microbial whole-genome shotgun sequencing. Biosci Biotech Biochem 64: 670–673.
[39]
Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: Detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15: 387–396.
[40]
Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.
[41]
Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, et al. (2000) Complete genome sequence of alkaliphilic bacterium, Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28: 4317–4331.
[42]
Nikitin F, Rance B, Itoh M, Kanehisa M, Lisacek F (2004) Using protein motif combinations to update KEGG pathway maps and orthologue tables. Genome Informatics 15: 266–275.
[43]
Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, et al. (2007) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Database. Nucleic Acids Res 36: D-623–631.
[44]
Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, et al. (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32: 6292–6303.
[45]
Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial Flora in the deepest sea mud of Mariana Trench. FEMS Microbiol Lett 152: 279–285.
[46]
DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89: 5685–5689.
[47]
Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
[48]
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500.
[49]
Guindon S, Gascuel OA (2003) Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
[50]
Ciccarelli FD, et al. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311: 1283–1287.
[51]
Wu D, Hugenholz P, Mavromatis K, Pukall R, Dalin E, et al. (2009) A phylogeny-driven genomic encyclopedia of Bacteria and Archaea. Nature 462: 1056–1060.
[52]
Stamatakis A, Lundwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463.
[53]
Uchiyama I, Higuchi T, Kawai M (2010) MBGD update 2010: toward a comprehensive resource for exploring microbial genome diversity. Nucleic Acids Res 38: D361–D365.
[54]
Uchiyama I (2006) Hierarchical clustering algorithm for comprehensive orthologous- domain classification in multiple genomes. Nucleic Acids Res 34: 647–658.
[55]
Martin W, Baross J, Kelley D, Russell M (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6: 805–814.
[56]
Murata T, Yamato I, Kakinuma Y (2005) Structure and mechanism of vacuolar Na+-translocating ATPase from Enterococcus hirae. J Bioenerg Biomembr 37: 411–4113.
[57]
White O, Eisen J, Heidelberg JF, Hickey EK, Peterson JD, et al. (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571–1577.