[1] | Thompson AM, Schofield BR (2000) Afferent projections of the superior olivary complex. Microsc Res Tech 51: 330–354. doi:10.1002/1097-0029(20001115)51:4<330::AID?-JEMT4>3.0.CO;2-X.
|
[2] | Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157: 1–42.
|
[3] | Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60: 457–474.
|
[4] | Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136: 453–484. doi:10.1002/cne.901360407.
|
[5] | Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155: 251–300. doi:10.1002/cne.901550302.
|
[6] | Lorente de Nó R (1981) The primary acoustic nuclei. Raven Press, New York.
|
[7] | Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1: 220–235.
|
[8] | Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol 56: 261–286.
|
[9] | Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62: 1303–1329.
|
[10] | Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213: 448–463. doi:10.1002/cne.902130408.
|
[11] | Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225: 167–186. doi:10.1002/cne.902250203.
|
[12] | Smith PH, Rhode WS (1987) Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J Comp Neurol 266: 360–375. doi:10.1002/cne.902660305.
|
[13] | Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73: 263–284.
|
[14] | Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282: 595–616. doi:10.1002/cne.902820410.
|
[15] | Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304: 387–407. doi:10.1002/cne.903040305.
|
[16] | Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331: 245–260. doi:10.1002/cne.903310208.
|
[17] | Ostapoff EM, Feng JJ, Morest DK (1994) A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties. J Comp Neurol 346: 19–42. doi:10.1002/cne.903460103.
|
[18] | Needham K, Paolini AG (2006) Neural timing, inhibition and the nature of stellate cell interaction in the ventral cochlear nucleus. Hear Res 216–217: 31–42. doi:10.1016/j.heares.2006.01.016.
|
[19] | Rhode WS (2008) Response patterns to sound associated with labeled globular/bushy cells in cat. Neuroscience 154: 87–98. doi:10.1016/j.neuroscience.2008.03.013.
|
[20] | Frisina RD, Chamberlain SC, Brachman ML, Smith RL (1982) Anatomy and physiology of the gerbil cochlear nucleus: An improved surgical approach for microelectrode studies. Hearing Research 6: 259–275. doi:16/0378-5955(82)90059-4.
|
[21] | Frisina RD, Smith RL, Chamberlain SC (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44: 99–122.
|
[22] | Kopp-Scheinpflug C, Dehmel S, D?rrscheidt GJ, Rübsamen R (2002) Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. J Neurosci 22: 11004–11018.
|
[23] | Webster DB (1971) Projection of the cochlea to cochlear nuclei in Merriam's kangaroo rat. J Comp Neurol 143: 323–340. doi:10.1002/cne.901430305.
|
[24] | Noda Y, Pirsig W (1974) Anatomical projection of the cochlea to the cochlear nuclei of the guinea pig. Arch Otorhinolaryngol 208: 107–120.
|
[25] | Ryan AF, Woolf NK, Sharp FR (1982) Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study. J Comp Neurol 207: 369–380. doi:10.1002/cne.902070408.
|
[26] | Vater M, Feng AS, Betz M (1985) An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J Comp Physiol A 157: 671–686.
|
[27] | Müller M (1990) Quantitative comparison of frequency representation in the auditory brainstem nuclei of the gerbil, Pachyuromys duprasi. Exp Brain Res 81: 140–149.
|
[28] | Young ED, Robert JM, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 60: 1–29.
|
[29] | Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32: 613–636.
|
[30] | Phillips DP (1989) Timing of spike discharges in cat auditory cortex neurons: implications for encoding of stimulus periodicity. Hearing Research 40: 137–146.
|
[31] | Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71: 1022–1036.
|
[32] | Kopp-Scheinpflug C, Fuchs K, Lippe WR, Tempel BL, Rübsamen R (2003) Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo. J Neurosci 23: 9199–9207.
|
[33] | Pfeiffer RR (1966) Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154: 667–668.
|
[34] | Englitz B, Tolnai S, Typlt M, Jost J, Rübsamen R (2009) Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation. PLoS ONE 4: e7014. doi:10.1371/journal.pone.0007014.
|
[35] | Typlt M, Haustein MD, Dietz B, Steinert JR, Witte M, et al. (2010) Presynaptic and postsynaptic origin of multicomponent extracellular waveforms at the endbulb of Held-spherical bushy cell synapse. Eur J Neurosci 31: 1574–1581. doi:10.1111/j.1460-9568.2010.07188.x.
|
[36] | Duda R, Hart PE, Stork DG (2001) Pattern Classification. New York: Wiley.
|
[37] | Englitz B, Ahrens M, Tolnai S, Rübsamen R, Sahani M, et al. (2010) Multilinear models of single cell responses in the medial nucleus of the trapezoid body. Network 21: 91–124. doi:10.3109/09548981003801996.
|
[38] | Ostapoff E-M, Morest DK (1989) A degenerative disorder of the central auditory system of the gerbil. Hearing Research 37: 141–162. doi:10.1016/0378-5955(89)90036-1.
|
[39] | Statler KD, Chamberlain SC, Slepecky NB, Smith RL (1990) Development of mature microcystic lesions in the cochlear nuclei of the mongolian gerbil, Meriones unguiculatus. Hearing Research 50: 275–288. doi:10.1016/0378-5955(90)90051-P.
|
[40] | Yu S-M, Ko T-L, Lin K-H (2011) Postnatal development of microcyst in the anteroventral cochlear nucleus of the Mongolian gerbil: a light- and electron microscopic study. Med Mol Morphol 44: 158–167. doi:10.1007/s00795-010-0523-2.
|
[41] | Winter IM, Palmer AR (1990) Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hearing Research 44: 161–178. doi:10.1016/0378-5955(90)90078-4.
|
[42] | Bleeck S, Winter IM (2007) A Model of Ventral Cochlear Nucleus Units Based on First Order. In: Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, et al., editors. Hearing – From Sensory Processing to Perception. Berlin, Heidelberg: Springer. pp. 27–33.
|
[43] | Arnott RH, Wallace MN, Shackleton TM, Palmer AR (2004) Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus. J Assoc Res Otolaryngol 5: 153–170. doi:10.1007/s10162-003-4036-8.
|
[44] | Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63: 1169–1190.
|
[45] | Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3: 2043–2053.
|
[46] | Wu SH, Oertel D (1984) Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J Neurosci 4: 1577–1588.
|
[47] | Cao X-J, Shatadal S, Oertel D (2007) Voltage-sensitive conductances of bushy cells of the Mammalian ventral cochlear nucleus. J Neurophysiol 97: 3961–3975. doi:10.1152/jn.00052.2007.
|
[48] | Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63: 442–455.
|
[49] | Kim DO, Molnar CE (1979) A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. J Neurophysiol 42: 16–30.
|
[50] | Sokolowski BH, Sachs MB, Goldstein JL (1989) Auditory nerve rate-level functions for two-tone stimuli: possible relation to basilar membrane nonlinearity. Hear Res 41: 115–123.
|
[51] | Paolini AG, FitzGerald JV, Burkitt AN, Clark GM (2001) Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hear Res 159: 101–116.
|
[52] | Louage DHG, van der Heijden M, Joris PX (2004) Temporal properties of responses to broadband noise in the auditory nerve. J Neurophysiol 91: 2051–2065. doi:10.1152/jn.00816.2003.
|
[53] | Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat's anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160: 491–506. doi:10.1002/cne.901600406.
|
[54] | Cant NB, Morest DK (1979) The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4: 1925–1945.
|
[55] | Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: relationship between endbulbs of held and spherical bushy cells. J Comp Neurol 305: 35–48. doi:10.1002/cne.903050105.
|
[56] | Nicol MJ, Walmsley B (2002) Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus. J Physiol (Lond.) 539: 713–723.
|
[57] | Ostapoff EM, Morest DK (1991) Synaptic organization of globular bushy cells in the ventral cochlear nucleus of the cat: a quantitative study. J Comp Neurol 314: 598–613. doi:10.1002/cne.903140314.
|
[58] | Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70: 2562–2583.
|
[59] | Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136: 843–863. doi:10.1016/j.neuroscience.2005.08.068.
|
[60] | Cant NB (1981) The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience 6: 2643–2655.
|
[61] | Ferragamo MJ, Golding NL, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79: 51–63.
|
[62] | Josephson EM, Morest Dk (1998) A quantitative profile of the synapses on the stellate cell body and axon in the cochlear nucleus of the chinchilla. J Neurocytol 27: 841–864.
|
[63] | Young ED, Sachs MB (2008) Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation. Neuroscience 154: 127–138. doi:10.1016/j.neuroscience.2008.01.036.
|
[64] | Arle JE, Kim DO (1991) Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol Cybern 64: 273–283. doi:10.1007/BF00199590.
|
[65] | Wang X, Sachs MB (1995) Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms. J Neurophysiol 73: 1600–1616.
|
[66] | Sumner CJ, Meddis R, Winter IM (2009) The role of auditory nerve innervation and dendritic filtering in shaping onset responses in the ventral cochlear nucleus. Brain Res 1247: 221–234. doi:10.1016/j.brainres.2008.09.054.
|
[67] | Saint Marie RL, Ostapoff EM, Benson CG, Morest DK (1993) Non-cochlear projections to the ventral cochlear nucleus: are they mainly inhibitory? In: Merchan MA, editor. The mammalian cochlear nuclei: organization and function. New York: Plenum Press.
|
[68] | Cant NB, Benson CG (2006) Wisteria floribunda lectin is associated with specific cell types in the ventral cochlear nucleus of the gerbil, Meriones unguiculatus. Hear Res 216–217: 64–72. doi:10.1016/j.heares.2006.01.008.
|
[69] | Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276: 423–435. doi:10.1002/cne.902760307.
|
[70] | Juiz JM, Albin RL, Helfert RH, Altschuler RA (1994) Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig. Brain Res 639: 193–201.
|
[71] | Bilak SR, Morest DK (1998) Differential expression of the metabotropic glutamate receptor mGluR1alpha by neurons and axons in the cochlear nucleus: in situ hybridization and immunohistochemistry. Synapse 28: 251–270. doi:10.1002/(SICI)1098-2396(199804)28:4<251:?:AID-SYN1>3.0.CO;2-8.
|
[72] | Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89: 3070–3082. doi:10.1152/jn.00125.2002.
|
[73] | Pór A, Pocsai K, Rusznák Z, Szucs G (2005) Presence and distribution of three calcium binding proteins in projection neurons of the adult rat cochlear nucleus. Brain Res 1039: 63–74. doi:10.1016/j.brainres.2005.01.057.
|
[74] | Bazwinsky I, H?rtig W, Rübsamen R (2008) Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium-binding protein immunolabeling. J Chem Neuroanat 35: 158–174. doi:10.1016/j.jchemneu.2007.10.003.
|
[75] | Oertel D, Shatadal S, Cao X-J (2008) In the ventral cochlear nucleus Kv1.1 and subunits of HCN1 are colocalized at surfaces of neurons that have low-voltage-activated and hyperpolarization-activated conductances. Neuroscience 154: 77–86. doi:10.1016/j.neuroscience.2008.01.085.
|
[76] | Maass W, Natschl\?ger T, Markram H (2002) Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural computation 14: 2531–2560.
|