全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

DOI: 10.1371/journal.pone.0029965

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies.

References

[1]  Thompson AM, Schofield BR (2000) Afferent projections of the superior olivary complex. Microsc Res Tech 51: 330–354. doi:10.1002/1097-0029(20001115)51:4<330::AID?-JEMT4>3.0.CO;2-X.
[2]  Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157: 1–42.
[3]  Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60: 457–474.
[4]  Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136: 453–484. doi:10.1002/cne.901360407.
[5]  Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155: 251–300. doi:10.1002/cne.901550302.
[6]  Lorente de Nó R (1981) The primary acoustic nuclei. Raven Press, New York.
[7]  Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1: 220–235.
[8]  Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol 56: 261–286.
[9]  Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62: 1303–1329.
[10]  Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213: 448–463. doi:10.1002/cne.902130408.
[11]  Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225: 167–186. doi:10.1002/cne.902250203.
[12]  Smith PH, Rhode WS (1987) Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. J Comp Neurol 266: 360–375. doi:10.1002/cne.902660305.
[13]  Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73: 263–284.
[14]  Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282: 595–616. doi:10.1002/cne.902820410.
[15]  Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304: 387–407. doi:10.1002/cne.903040305.
[16]  Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331: 245–260. doi:10.1002/cne.903310208.
[17]  Ostapoff EM, Feng JJ, Morest DK (1994) A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties. J Comp Neurol 346: 19–42. doi:10.1002/cne.903460103.
[18]  Needham K, Paolini AG (2006) Neural timing, inhibition and the nature of stellate cell interaction in the ventral cochlear nucleus. Hear Res 216–217: 31–42. doi:10.1016/j.heares.2006.01.016.
[19]  Rhode WS (2008) Response patterns to sound associated with labeled globular/bushy cells in cat. Neuroscience 154: 87–98. doi:10.1016/j.neuroscience.2008.03.013.
[20]  Frisina RD, Chamberlain SC, Brachman ML, Smith RL (1982) Anatomy and physiology of the gerbil cochlear nucleus: An improved surgical approach for microelectrode studies. Hearing Research 6: 259–275. doi:16/0378-5955(82)90059-4.
[21]  Frisina RD, Smith RL, Chamberlain SC (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44: 99–122.
[22]  Kopp-Scheinpflug C, Dehmel S, D?rrscheidt GJ, Rübsamen R (2002) Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. J Neurosci 22: 11004–11018.
[23]  Webster DB (1971) Projection of the cochlea to cochlear nuclei in Merriam's kangaroo rat. J Comp Neurol 143: 323–340. doi:10.1002/cne.901430305.
[24]  Noda Y, Pirsig W (1974) Anatomical projection of the cochlea to the cochlear nuclei of the guinea pig. Arch Otorhinolaryngol 208: 107–120.
[25]  Ryan AF, Woolf NK, Sharp FR (1982) Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study. J Comp Neurol 207: 369–380. doi:10.1002/cne.902070408.
[26]  Vater M, Feng AS, Betz M (1985) An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J Comp Physiol A 157: 671–686.
[27]  Müller M (1990) Quantitative comparison of frequency representation in the auditory brainstem nuclei of the gerbil, Pachyuromys duprasi. Exp Brain Res 81: 140–149.
[28]  Young ED, Robert JM, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 60: 1–29.
[29]  Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32: 613–636.
[30]  Phillips DP (1989) Timing of spike discharges in cat auditory cortex neurons: implications for encoding of stimulus periodicity. Hearing Research 40: 137–146.
[31]  Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71: 1022–1036.
[32]  Kopp-Scheinpflug C, Fuchs K, Lippe WR, Tempel BL, Rübsamen R (2003) Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo. J Neurosci 23: 9199–9207.
[33]  Pfeiffer RR (1966) Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154: 667–668.
[34]  Englitz B, Tolnai S, Typlt M, Jost J, Rübsamen R (2009) Reliability of synaptic transmission at the synapses of Held in vivo under acoustic stimulation. PLoS ONE 4: e7014. doi:10.1371/journal.pone.0007014.
[35]  Typlt M, Haustein MD, Dietz B, Steinert JR, Witte M, et al. (2010) Presynaptic and postsynaptic origin of multicomponent extracellular waveforms at the endbulb of Held-spherical bushy cell synapse. Eur J Neurosci 31: 1574–1581. doi:10.1111/j.1460-9568.2010.07188.x.
[36]  Duda R, Hart PE, Stork DG (2001) Pattern Classification. New York: Wiley.
[37]  Englitz B, Ahrens M, Tolnai S, Rübsamen R, Sahani M, et al. (2010) Multilinear models of single cell responses in the medial nucleus of the trapezoid body. Network 21: 91–124. doi:10.3109/09548981003801996.
[38]  Ostapoff E-M, Morest DK (1989) A degenerative disorder of the central auditory system of the gerbil. Hearing Research 37: 141–162. doi:10.1016/0378-5955(89)90036-1.
[39]  Statler KD, Chamberlain SC, Slepecky NB, Smith RL (1990) Development of mature microcystic lesions in the cochlear nuclei of the mongolian gerbil, Meriones unguiculatus. Hearing Research 50: 275–288. doi:10.1016/0378-5955(90)90051-P.
[40]  Yu S-M, Ko T-L, Lin K-H (2011) Postnatal development of microcyst in the anteroventral cochlear nucleus of the Mongolian gerbil: a light- and electron microscopic study. Med Mol Morphol 44: 158–167. doi:10.1007/s00795-010-0523-2.
[41]  Winter IM, Palmer AR (1990) Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hearing Research 44: 161–178. doi:10.1016/0378-5955(90)90078-4.
[42]  Bleeck S, Winter IM (2007) A Model of Ventral Cochlear Nucleus Units Based on First Order. In: Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, et al., editors. Hearing – From Sensory Processing to Perception. Berlin, Heidelberg: Springer. pp. 27–33.
[43]  Arnott RH, Wallace MN, Shackleton TM, Palmer AR (2004) Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus. J Assoc Res Otolaryngol 5: 153–170. doi:10.1007/s10162-003-4036-8.
[44]  Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63: 1169–1190.
[45]  Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3: 2043–2053.
[46]  Wu SH, Oertel D (1984) Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J Neurosci 4: 1577–1588.
[47]  Cao X-J, Shatadal S, Oertel D (2007) Voltage-sensitive conductances of bushy cells of the Mammalian ventral cochlear nucleus. J Neurophysiol 97: 3961–3975. doi:10.1152/jn.00052.2007.
[48]  Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63: 442–455.
[49]  Kim DO, Molnar CE (1979) A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. J Neurophysiol 42: 16–30.
[50]  Sokolowski BH, Sachs MB, Goldstein JL (1989) Auditory nerve rate-level functions for two-tone stimuli: possible relation to basilar membrane nonlinearity. Hear Res 41: 115–123.
[51]  Paolini AG, FitzGerald JV, Burkitt AN, Clark GM (2001) Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hear Res 159: 101–116.
[52]  Louage DHG, van der Heijden M, Joris PX (2004) Temporal properties of responses to broadband noise in the auditory nerve. J Neurophysiol 91: 2051–2065. doi:10.1152/jn.00816.2003.
[53]  Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat's anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160: 491–506. doi:10.1002/cne.901600406.
[54]  Cant NB, Morest DK (1979) The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4: 1925–1945.
[55]  Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: relationship between endbulbs of held and spherical bushy cells. J Comp Neurol 305: 35–48. doi:10.1002/cne.903050105.
[56]  Nicol MJ, Walmsley B (2002) Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus. J Physiol (Lond.) 539: 713–723.
[57]  Ostapoff EM, Morest DK (1991) Synaptic organization of globular bushy cells in the ventral cochlear nucleus of the cat: a quantitative study. J Comp Neurol 314: 598–613. doi:10.1002/cne.903140314.
[58]  Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70: 2562–2583.
[59]  Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136: 843–863. doi:10.1016/j.neuroscience.2005.08.068.
[60]  Cant NB (1981) The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience 6: 2643–2655.
[61]  Ferragamo MJ, Golding NL, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79: 51–63.
[62]  Josephson EM, Morest Dk (1998) A quantitative profile of the synapses on the stellate cell body and axon in the cochlear nucleus of the chinchilla. J Neurocytol 27: 841–864.
[63]  Young ED, Sachs MB (2008) Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation. Neuroscience 154: 127–138. doi:10.1016/j.neuroscience.2008.01.036.
[64]  Arle JE, Kim DO (1991) Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol Cybern 64: 273–283. doi:10.1007/BF00199590.
[65]  Wang X, Sachs MB (1995) Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms. J Neurophysiol 73: 1600–1616.
[66]  Sumner CJ, Meddis R, Winter IM (2009) The role of auditory nerve innervation and dendritic filtering in shaping onset responses in the ventral cochlear nucleus. Brain Res 1247: 221–234. doi:10.1016/j.brainres.2008.09.054.
[67]  Saint Marie RL, Ostapoff EM, Benson CG, Morest DK (1993) Non-cochlear projections to the ventral cochlear nucleus: are they mainly inhibitory? In: Merchan MA, editor. The mammalian cochlear nuclei: organization and function. New York: Plenum Press.
[68]  Cant NB, Benson CG (2006) Wisteria floribunda lectin is associated with specific cell types in the ventral cochlear nucleus of the gerbil, Meriones unguiculatus. Hear Res 216–217: 64–72. doi:10.1016/j.heares.2006.01.008.
[69]  Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276: 423–435. doi:10.1002/cne.902760307.
[70]  Juiz JM, Albin RL, Helfert RH, Altschuler RA (1994) Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig. Brain Res 639: 193–201.
[71]  Bilak SR, Morest DK (1998) Differential expression of the metabotropic glutamate receptor mGluR1alpha by neurons and axons in the cochlear nucleus: in situ hybridization and immunohistochemistry. Synapse 28: 251–270. doi:10.1002/(SICI)1098-2396(199804)28:4<251:?:AID-SYN1>3.0.CO;2-8.
[72]  Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89: 3070–3082. doi:10.1152/jn.00125.2002.
[73]  Pór A, Pocsai K, Rusznák Z, Szucs G (2005) Presence and distribution of three calcium binding proteins in projection neurons of the adult rat cochlear nucleus. Brain Res 1039: 63–74. doi:10.1016/j.brainres.2005.01.057.
[74]  Bazwinsky I, H?rtig W, Rübsamen R (2008) Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium-binding protein immunolabeling. J Chem Neuroanat 35: 158–174. doi:10.1016/j.jchemneu.2007.10.003.
[75]  Oertel D, Shatadal S, Cao X-J (2008) In the ventral cochlear nucleus Kv1.1 and subunits of HCN1 are colocalized at surfaces of neurons that have low-voltage-activated and hyperpolarization-activated conductances. Neuroscience 154: 77–86. doi:10.1016/j.neuroscience.2008.01.085.
[76]  Maass W, Natschl\?ger T, Markram H (2002) Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural computation 14: 2531–2560.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133