全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Scaling Effects and Spatio-Temporal Multilevel Dynamics in Epileptic Seizures

DOI: 10.1371/journal.pone.0030371

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase coherence measures.

References

[1]  Mormann F, Andrzejak R, Elger C, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130: 314–333.
[2]  Schelter B, Timmer J, Schulze-Bonhage A, editors. (2008) Seizure Predicition in Epilepsy. Wiley.
[3]  Litt B, Echauz J (2002) Prediction of epileptic seizures. The Lancet Neurology 1: 22–30.
[4]  Robinson P, Rennie C, Rowe D (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65: 041924.
[5]  Wendling F (2008) Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation. Expert Rev Nerother 8: 889–896.
[6]  da Silva FL, Blanes W, Kalitzin S, Parra J, Suffczynski P, et al. (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44: 72–83.
[7]  Volman V, Perc M, Bazhenov M (2011) Gap junctions and epileptic seizures two sides of the same coin? PLoS ONE 6: e20572.
[8]  Shusterman V, Troy W (2008) From baseline epieptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Phys Rev E 77: 061911.
[9]  Ermentrout G, Terman D (2010) Mathematical Foundations of Neuroscience. Springer.
[10]  Percival D, Walden A (2000) Wavelet Methods for Time Series Analysis. CUP.
[11]  Breakspear M, Stam C (2005) Dynamics of a neural system with a multiscale architecture. Phil Trans R Soc B 360: 1051–1074.
[12]  Honey C, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci 104: 10240–10245.
[13]  Richardson M (2011) New observations may inform seizure models: very fast and very slow oscillations. Prog Biophys Molec Biol 105: 5–13.
[14]  Deco G, Jirsa W, Robinson P, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comp Biol 4: e1000092.
[15]  Izhikevich E (2007) Dynamical Systems in Neuroscience. MIT Press.
[16]  Keener J, Sneyd J (2008) Mathematical Physiology 1: Cellular Physiology. Springer.
[17]  FitzHugh R (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophysics 17: 257–269.
[18]  Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50: 2061–2070.
[19]  Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L (2004) Effects of noise in excitable systems. Physics Reports 392: 321–424.
[20]  Scheffer M, Bascompte J, Brock W, Brovkhin V, Carpenter S, et al. (2009) Early-warning signals for critical transitions. Nature 461: 53–59.
[21]  Kuehn C (2011) A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240: 1020–1035.
[22]  Lenton T, Held H, Kriegler E, Hall J, Lucht W, et al. (2008) Tipping elements in the Earth's climate system. Proc Natl Acad Sci USA 105: 1786–1793.
[23]  Alley R, Marotzke J, Nordhaus W, Overpeck J, Peteet D, et al. (2003) Abrupt climate change. Science 299: 2005–2010.
[24]  Clark J, Carpenter S, Barber M, Collins S, Dobson A, et al. (2001) Ecological forecasts: an emerging imperative. Science 293: 657–660.
[25]  Brock SCW, Cole J, Kitchell J, Place M (2008) Leading indicators of trophic cascades. Ecol Lett 11: 128–138.
[26]  Kelso J, Bressler S, Buchanan S, DeGuzman G, Ding M, et al. (1992) A phase transition in human brain and bahvior. Phys Lett A 169: 134–144.
[27]  Lindner B (2004) Interspike interval statistics of neurons driven by colored noise. Phys Rev E 69: 022901.
[28]  Osorio I, Frei M, Giftakis J, Peters T, Ingram J, et al. (2002) Performance reassessment of real-time seizure-detection algorithm on long ECoG series. Epilepsia 43: 1522–1535.
[29]  Schelter B, Winterhalder M, Maiwald T, Brandt A, Schad A, et al. (2006) Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. Chaos 16: 013108.
[30]  Kuehn C (2011) A mathematical framework for critical transitions: normal forms, variance and applications. arXiv:11012908: 1–55.
[31]  Rodrigues S, Barton D, Szalai R, Benjamin O, Richardson M, et al. (2009) Transitions to spikewave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J Comput Neurosci 27: 507–526.
[32]  Rodrigues S, Barton D, Marten F, Kibuuka M, Alarcon G, et al. (2010) A method for detecting false bifurcations in dynamical systems: application to neural-field models. Biol Cybern 102: 145–154.
[33]  Marten F, Rodrigues S, Benjamin O, Richardson M, Terry J (2009) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Phil Trans R Soc A 367: 1145–1161.
[34]  Suffczynski P, Kalitzin S, da Silva FL (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neurosci 126: 467–484.
[35]  Breakspear M, Roberts J, Terry J, Rodrigues S, Mahant N, et al. (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16: 1296–1313.
[36]  Suffczynski P, Kalitzin S, da Silva FL, Parra J, Velios D, et al. (2008) Active paradigms of seizure anticipation: computer model evidence for necessity of stimulation. Phys Rev E 78: 051917.
[37]  Lehnertz K, Bialonski S, Horstmann MT, Krug D, Rothkegel A, et al. (2009) Synchronization phenomena in human epileptic brain networks. J Neurosci Meth 183: 42–48.
[38]  Kuhnert MT, Elger C, Lehnertz K (2010) Long-term variability of global statistical properties of epileptic brain networks. Chaos 20: 043126.
[39]  Kitzbichler M, Smith M, Christensen S, Bullmore E (2009) Broadband criticality of human brain network synchronization. PLoS Comput Biol 5: 1000314.
[40]  Bosnyakova D, Gabova A, Zharikova A, Gnezditski V, Kuznetsova G, et al. (2007) Some peculiarities of time-frequency dynamics of spike-wave discharges in humans and rats. Clin Neurophysiol 118: 1736–1743.
[41]  Wendling F, Bartolomei F, Bellanger J, Bourien J, Chauvel P (2003) Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 126: 1449–1459.
[42]  Molaee-Ardekani B, Benquet P, Bartolomei F, Wendling F (2010) Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From ‘altered structure’ to ‘dysfunction’. NeuroImage 52: 1109–1122.
[43]  Rosenblum M, Pikovsky A, Kurths J (1997) From phase to lag synchronization in coupled chaotic oscillators. Phys Rev Lett 78: 4193–4196.
[44]  Feldwisch-Drentrup H, Schelter B, Jachan M, Nawrath J, Timmer J, et al. (2010) Joining the benefits: combining epileptic seizure prediction methods. Epilepsia 51: 1598–1606.
[45]  Chavez M, Quyen MLV, Navarro V, Baulac M, Martinerie J (2003) Spatio-temporal dynamics prior to neocrotical seizures: amplitude versus phase couplings. IEEE T Bio-Med Eng 50: 571–583.
[46]  Rocsoreanu C, Georgescu A, Giurgiteanu N (2000) The FitzHugh-Nagumo Model – Bifurcation and Dynamics. Kluwer.
[47]  Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–505.
[48]  Rubin J, Wechselberger M (2007) Giant squid - hidden canard: the 3d geometry of the hodgin huxley model. Biol Cybern 97:
[49]  Guckenheimer J, Kuehn C (2009) Computing slow manifolds of saddle-type. SIAM J Appl Dyn Syst 8: 854–879.
[50]  Guckenheimer J, Kuehn C (2009) Homoclinic orbits of the FitzHugh-Nagumo equation: The singular limit. DCDS-S 2: 851–872.
[51]  der Pol BV (1920) A theory of the amplitude of free and forced triode vibrations. Radio Review 1: 701–710.
[52]  Lindner B, Schimansky-Geier L (1999) Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys Rev E 60: 7270–7276.
[53]  Desroches M, Guckenheimer J, Kuehn C, Krauskopf B, Osinga H, et al. (2012) Mixed-mode oscillations with multiple time scales. SIAM Rev (to appear).
[54]  Mishchenko E, Rozov N (1980) Differential Equations with Small Parameters and Relaxation Oscillations (translated from Russian). Plenum Press.
[55]  Grasman J (1987) Asymptotic Methods for Relaxation Oscillations and Applications. Springer.
[56]  Strogatz S (2000) Nonlinear Dynamics and Chaos. Westview Press.
[57]  Guckenheimer J (2002) Bifurcation and degenerate decomposition in multiple time scale dynamical systems. Nonlinear Dynamics and Chaos: Where do we go from here? Taylor and Francis. pp. 1–20.
[58]  Berglund N, Gentz B (2009) Stochastic dynamic bifurcations and excitability. In: Laing C, Lord G, editors. pp. 65–93. Stochastic methods in Neuroscience, OUP, volume 2.
[59]  DeVille RL, Vanden-Eijnden E, Muratov C (2005) Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Phys Rev E 72: 031105.
[60]  Muratov C, Vanden-Eijnden E, E W (2005) Self-induced stochastic resonance in excitable systems. Physica D 210: 227–240.
[61]  Muratov C, Vanden-Eijnden E (2008) Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle. Chaos 18: 015111.
[62]  Neishtadt A (1987) Persistence of stability loss for dynamical bifurcations. I. Di_erential Equations Translations 23: 1385–1391.
[63]  Neishtadt A (1988) Persistence of stability loss for dynamical bifurcations. II. Di_erential Equations Translations 24: 171–176.
[64]  Kuznetsov Y (2004) Elements of Applied Bifurcation Theory - 3rd edition. Springer.
[65]  Taylor P, Baier G (2011) A spatially extended model for macroscopic spike-wave discharges. J Comput Neurosci 1–6.
[66]  Freidlin M, Wentzell A (1998) Random Perturbations of Dynamical Systems. Springer.
[67]  H?nggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: fifty years after Kramers. Rev Mod Phys 62: 251–341.
[68]  Gardiner C (2009) Stochastic Methods. Springer, 4th edition.
[69]  Berglund N, Gentz B (2006) Noise-Induced Phenomena in Slow-Fast Dynamical Systems. Springer.
[70]  Kalitzin S, Velis D, da Silva FL (2010) Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav 17: 310–323.
[71]  Gaspard P, Wang XJ (1987) Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium systems. J Stat Phys 48: 151–199.
[72]  Lu YC (1976) Singularity Theory and an Introduction to Catastrophe Theory. Springer.
[73]  Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, 2nd edition.
[74]  Sagues F, Sancho J, Garcia-Ojalvo J (2007) Spatiotemporal order out of noise. Rev Mod Phys 79: 829–882.
[75]  Perc M (2005) Spatial coherence resonance in excitable media. Phys Rev E 72: 016207.
[76]  Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144: 358–369.
[77]  Mormann F, Andrezjak R, Kreuz T, Rieke C, David P, et al. (2003) Automated detection of a preseizure state based on a decrease in synchronization in intracranial eeg recordings from epilepsy patients. Phys Rev E 67: 021912.
[78]  Mormann F, Kreuz T, Andrezjak R, David P, Lehnertz K, et al. (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53: 173–185.
[79]  Bullmore E, Long C, Suckling J, Fadili J, Calvert G, et al. (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains. Hum Brain Mapp 12: 61–78.
[80]  Bullmore E, Fadili J, Breakspear M, Salvador R, Suckling J, et al. (2003) Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat Methods Med Res 12: 375–399.
[81]  Subasi A (2005) Epileptic seizure detection using dynamic wavelet network. Expert Syst Appl 29: 343–355.
[82]  van Luijtelaar G, Hramov A, Sitnikova E, Koronovskii A (2011) Spike-wave discharges in WAG/Rij rats are preceded by delta and theta precursor activity in cortex and thalamus. Clin Neurophysiol 122: 687–695.
[83]  Whitcher B, Craigmile P, Brown P (2005) Time-varying spectral analysis in neurophysiological time series using Hilbert wavelet pairs. Signal Process 85: 2065–2081.
[84]  Osorio I, Frei M, Sornette D, Milton J, Lai YC (2010) Epileptic seizures: quakes of the brain? Phys Rev E 82: 021919.
[85]  Suffczynski P, da Silva FL, Demetrios J, Velis N, Bouwman B, et al. (2006) Dynamics of epileptic phenomena determined from statistics of ictal transitions. IEEE Trans Biomed Eng 53: 524–532.
[86]  Jost J (2006) Partial Differential Equations. Springer.
[87]  Kapiris P, Polygiannakis J, Li X, Yao X, Eftaxias K (2005) Similarities in precursory features in seismic shocks and epileptic seizures. Europhys Lett 69: 657–663.
[88]  Beggs J, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23: 11167–11177.
[89]  Petermann T, Thiagarajan T, Lebedev M, Nicolelis M, Chialvo D, et al. (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci USA 106: 15921–15926.
[90]  Bak P, Paczuski M (1995) Complexity, contingency, and criticality. Proc Natl Acad Sci USA 92: 6689–6696.
[91]  Levina A, Herrmann J, Geisel T (2007) Dynamical synapses causing self-organized criticality in neural networks. Nat Phys 3: 857–860.
[92]  Meisel C, Gross T (2009) Adaptive self-organization in a realistic neural network model. Phys Rev E 80: 061917.
[93]  Beggs J, Plenz D (2004) Neuronal avalanches are diverse and precice activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24: 5215–5229.
[94]  Bosnyakova D, Gabova A, Kuznetsova G, Obukhov Y, Midzyanovskaya I, et al. (2006) Timefrequency analysis of spike-wave discharges using a modified wavelet transform. J Neurosci Meth 154: 80–88.
[95]  Ihle M, Feldwirsch-Drentrup H, Teixeira C, Witon A, Schelter B, et al. (2011) Epilepsiae – a common database for research on seizure prediction. Comput Meth Prog Bio.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133