全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Avian Influenza (H5N1) Virus of Clade 2.3.2 in Domestic Poultry in India

DOI: 10.1371/journal.pone.0031844

Full-Text   Cite this paper   Add to My Lib

Abstract:

South Asia has experienced regular outbreaks of H5N1 avian influenza virus since its first detection in India and Pakistan in February, 2006. Till 2009, the outbreaks in this region were due to clade 2.2 H5N1 virus. In 2010, Nepal reported the first outbreak of clade 2.3.2 virus in South Asia. In February 2011, two outbreaks of H5N1 virus were reported in the State of Tripura in India. The antigenic and genetic analyses of seven H5N1 viruses isolated during these outbreaks were carried out. Antigenic analysis confirmed 64 to 256-fold reduction in cross reactivity compared with clade 2.2 viruses. The intravenous pathogenicity index of the isolates ranged from 2.80–2.95 indicating high pathogenicity to chickens. Sequencing of all the eight gene-segments of seven H5N1 viruses isolated in these outbreaks was carried out. The predicted amino acid sequence analysis revealed high pathogenicity to chickens and susceptibility to the antivirals, amantadine and oseltamivir. Phylogenetic analyses indicated that these viruses belong to clade 2.3.2.1 and were distinct to the clade 2.3.2.1 viruses isolated in Nepal. Identification of new clade 2.3.2 H5N1 viruses in South Asia is reminiscent of the introduction of clade 2.2 viruses in this region in 2006/7. It is now important to monitor whether the clade 2.3.2.1 is replacing clade 2.2 in this region or co-circulating with it. Continued co-circulation of various subclades of the H5N1 virus which are more adapted to land based poultry in a highly populated region such as South Asia increases the risk of evolution of pandemic H5N1 strains.

References

[1]  Li KS, Guan Y, Wang J, Smith GJ, Xu KM, et al. (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430: 209–213.
[2]  Guan Y, Poon LLM, Cheung CY, Ellis TM, Lim W, et al. (2004) H5N1 influenza: A protean pandemic threat. Proc Natl Acad Sci USA 101: 8156–8161.
[3]  Peiris JSM, de Jong MD, Guan Y (2007) Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20: 243–267.
[4]  World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization H5N1 Evolution Working Group (2008) Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1) [conference summary]. Emerg Infect Dis. Jul [16.07.2011]. Available from http://www.cdc.gov/EID/content/14/7/e1.h?tm DOI: 10.3201/eid1407.071681.
[5]  Li Y, Liu L, Zhang Y, Duan Z, Tian G, et al. (2011) New avian influenza virus (H5N1) in wild birds, Qinghai, China. Emerg Infect Dis 17: 265–267.
[6]  Deshpande KL, Fried VA, Ando M, Webster RG (1987) Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci USA 84: 36–40.
[7]  Kang HM, Batchuluun D, Kim MC, Choi JG, Erdene-Ochir TO, et al. (2011) Genetic analyses of H5N1 avian influenza virus in Mongolia, 2009 and its relationship with those of eastern Asia. Vet Microbiol 147: 170–175.
[8]  Reid SM, Shell WM, Barboi G, Onita I, Turcitu M, et al. (2011) First Reported Incursion of Highly Pathogenic Notifiable Avian Influenza A H5N1 Viruses from Clade 2.3.2 into European Poultry. Transbound. Emerg Dis 58: 76–78.
[9]  World Organization for Animal Health (2011) Update on highly pathogenic avian influenza in animals (Type H5 and H7). http://www.oie.int/animal-health-in-the-?world/update-on-avian-influenza accessed on May 13, 2011.
[10]  Dubey SC, Nagarajan S, Tosh C, Bhatia S, Lal Krishna (2009) Avian Influenza: A long known disease and its current threat. Ind J Anim Sci 79: 113–140.
[11]  Chakrabarti AK, Pawar SD, Cherian SS, Koratkar SS, Jadhav SM, et al. (2009) Characterization of the influenza A H5N1 viruses of the 2008–2009 outbreaks in India reveals a third introduction and possible endemicity. PLoS ONE 4(11): e7846. doi:10.1371/journal.pone.0007846.
[12]  Tosh C, Nagarajan S, Murugkar HV, Jain R, Behera P, et al. (2011) Phylogenetic evidence of multiple introduction of H5N1 virus in Malda district of West Bengal, India in 2008. Vet Microbiol 148: 132–139.
[13]  Tosh C, Murugkar HV, Nagarajan S, Tripathi S, Katare M, et al. (2011) Emergence of amantadine-resistant avian influenza H5N1 virus in India. Virus Genes 42: 10–15.
[14]  Food and Agricultural Organization H5N1 HPAI Global Overview- July and August 2010, prepared by EMPRESS/GLEW, Issues No. 24.
[15]  Duan L, Campitelli L, Fan XH, Leung YH, Vijaykrishna D, et al. (2007) Characterization of low-pathogenic H5 subtype influenza viruses from Eurasia: implications for the origin of highly pathogenic H5N1 viruses. J Virol 81: 7529–7539.
[16]  Duan L, Bahl J, Smith GJ, Wang J, Vijaykrishna D, et al. (2008) The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology 380: 243–254.
[17]  Neumann G, Shinya K, Kawaoka Y (2007) Molecular pathogenesis of H5N1 influenza viral infections. Antiviral Ther 12: 617–626.
[18]  Matrosovich M, Zhou N, Kawaoka Y, Webster RG (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73: 1146–1155.
[19]  Smith GJ, Vijaykrishna D, Ellis TM, Dyrting KC, Leung YH, et al. (2009) Characterization of avian influenza viruses A (H5N1) from wild birds, Hong Kong, 2004–2008. Emerg Infect Dis 15: 402–407.
[20]  Hoffmann E, Lipatov AS, Webby RJ, Govorkova EA, Webster RG (2005) Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci USA 102: 12915–12920.
[21]  Boltz DA, Douangngeun B, Phommachanh P, Sinthasak S, Mondry R, et al. (2010) Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic. J Gen Virol 91: 949–959.
[22]  Seo SH, Hoffmann E, Webster RG (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8: 950–954.
[23]  Jiao P, Tian G, Li Y, Deng G, Jiang Y, et al. (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82: 1146–1154.
[24]  Li Z, Jiang Y, Jiao P, Wang A, Zhao F, et al. (2006) The NS1 Gene Contributes to the Virulence of H5N1 Avian Influenza Viruses. J Virol 80: 1115–11123.
[25]  Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA (2008) A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA 105: 4381–4386.
[26]  Food and Agricultural Organization (2011) H5N1 HPAI Global Review – April to June, 2011. Issue no. 28 (http://www.fao.org/docrep/014/am722e/am7?22e00.pdf). Accessed on 21.09.2011.
[27]  Sharshov K, Silko N, Sousloparov I, Zaykovskaya A, Shestopalov A, et al. (2010) Avian influenza (H5N1) outbreak among wild birds, Russia, 2009. Emerg Infect Dis 16: 349–351.
[28]  Chen H, Smith GJD, Zhang SY, Qin K, Wang J, et al. (2005) H5N1 virus outbreaks in migratory waterfowl. Nature 436: 191–192.
[29]  Nagarajan S, Murugkar HV, Tosh C, Behera P, Khandia R, et al. (2011) Comparison of a nucleoprotein gene based RT-PCR with real time RT-PCR for diagnosis of avian influenza in clinical specimens. Res Vet Sci. In Press. doi:10.1016/j.rvsc.2011.06.005.
[30]  Nagarajan S, Tosh C, Murugkar HV, Venkatesh G, Katare M, et al. (2010) Isolation and molecular characterization of a H5N1 virus isolated from a Jungle crow (Corvus macrohynchos) in India. Virus Genes 41: 30–36.
[31]  WHO (2005) Recommended laboratory tests to identify avian influenza A virus in specimens from humans. www.who.int/csr/disease/avian_influenza/?guidelines/labtests/en/index.htm. Accessed July 10, 2011.
[32]  Nagarajan S, Rajukumar K, Tosh C, Ramaswamy V, Purohit K, et al. (2009) Isolation and pathotyping of H9N2 avian influenza viruses in Indian poultry. Vet Microbiol 133: 154–163.
[33]  World Health Organization (WHO) (2002) WHO Manual on Avian Influenza: Diagnosis and Surveillance. Global Influenza Programme, Department of Communicable Diseases Surveillance and Control, Geneva, Switzerland.
[34]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. doi:10.1093/molbev/msr121.
[35]  Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 1253–1256.
[36]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133